

Plans and Status of the Phase I Upgrade of the CMS Pixel Tracker

Hanno Perrey, for the CMS Tracker Collaboration

17th of September 2013, 22nd International Workshop on Vertex Detectors

- 1 Upgrade Motivation & Constraints
- 2 Sustaining the Pixel Physics Performance beyond $1 imes 10^{34}\,{
 m cm}^{-2}{
 m s}^{-1}$
- 3 Operating the Pixel Detector beyond $1 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Upgrade Status: Early Test Results & Preparation for Production

The (current) CMS Pixel Tracker

- The silicon pixel detector is the innermost component of the CMS tracking system.
- It consists of 3 layers in the barrel (BPIX, 48M pixels) and 2+2 disks in the forward region (FPIX, 18M pixels).
- $100 \ \mu\text{m} \times 150 \ \mu\text{m}$ pixel, achieved resolution in $r - \phi$ of $\sim 9 \ \mu\text{m}$ and in z of down to $\sim 20 \ \mu\text{m}$
- Plays crucial role in full tracking, high-level triggering, primary vertex finding, e^-/γ separation, μ reconstruction, τ identification, *b*-tagging

Hanno Perrey (DESY)

Why Upgrade Now?

- Pixel tracker designed for and performing very well at instantaneous luminosity of up to $1 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \Rightarrow$ expected 2015!
- At 2× design luminosity (likely reached before 2018):
 - reduced physics performance: difficult pattern recognition
 - reduced operational performance: limits of readout chip buffers and speed
 - increasing effects of radiation damage
- \Rightarrow Upgrade needed before 2018!

Constraints for a Phase I Upgrade:

- Schedule: during 2016/2017 extended year-end stop
- Keep services (cables, pipes, fibers, ...)

Goal of the upgrade: sustain the current pixel performance (efficiency/low fake-rate, resolution) at 50 interactions per bunch-crossing (pile-up) or higher with a "minimally-intrusive" replacement

From 3- to 4-Hit Tracking

- Optimized detector layout for 4-hit coverage over full η range (±2.5) with a radius of the innermost layer as close to beam pipe as possible
 - \blacktriangleright additional 4th BPIX layer: 48M pixel \rightarrow 79M pixel
 - \blacktriangleright additional 3rd FPIX discs: 18M pixel \rightarrow 45M pixel
- \Rightarrow Improves efficiency and resolution for pixel-only tracks important for:
 - High Level Triggering
 - \blacktriangleright full-track seeding \Rightarrow higher full track efficiency & lower fake track rate
 - ▶ vertexing: both primary (\rightarrow pile-up) and secondary (\rightarrow *b*-tagging)
- \Rightarrow Allows recovery of degradation in outer tracker layers

Hanno Perrey (DESY)

Phase I Upgrade of the CMS Pixel

VERTEX 2013 5 / 21

FPIX Layout

- 3+3 disks with 672 modules
- Separate inner and outer rings for easier replacement
- Same module design as BPIX
- Modules rotated by 20° to improve $r - \phi$ resolution (inner ring add. 12° tilt for better *z* resolution)
- Mounted on carbon fiber encapsulated thermal pyrolytic graphite (TPG) in cooled carbon-carbon rings: Lighter structure than present FPIX
- Structure designed for good heat spreading: $\Delta {\it T} < 10^{\circ}\,{\rm C}$ from CO_2 pipe to sensor

More Layers but Less Material?

- Additional layer/discs: $\sim 50\%$ more pixels
- Expected mass ratio (new/old):
 - BPIX $(|\eta| < 2.16)$: $6686 \,\mathrm{g}/16801 \,\mathrm{g} = 0.40$ (barrel part only)
 - FPIX ($|\eta| < 2.5$): 7040 g/8582 g = 0.82
- How is this possible?
 - moving passive material (electronic boards and connections) out of the tracking volume
 - ultra-lightweight mechanical support
 - $C_6F_{14} \rightarrow \text{two-phase CO}_2$ (low mass & allows smaller pipes)

Expected Performance: *b*-Tagging

- b-tagging relies on track impact parameter & primary vertex resolutions → sensitive to improvements in upgraded detector
- Study performed on simulated tt
 sample with Combined Secondary Vertex algorithm w/o any tuning w.r.t. pile-up (PU), upgraded detector geometry or algorithm settings
- *b*-tagging performance significantly better for upgraded detector:
 - at zero PU: result of 4th pixel layer & smaller inner layer radius
 - at PU of 50: still better than current detector at PU of 25

Sensor Technology for the Upgrade

- Keep present design: 285 μ m thick DOFZ Si pixel size of 100 \times 150 μ m²,
- n⁺-in-n: (already) radiation hard:
 - fluence of $1.5 \times 10^{15} \, n_{eq}/cm^2$ expected during lifetime of Layer 1 (replacement after 250 fb⁻¹)
 - \blacktriangleright for samples irradiated to $1.1\times 10^{15}\,n_{\rm eq}/cm^2$ bias of 450 to 600 V sufficient
 - also gain from improvements on thresholds (see next slide)
 - \Rightarrow Layer 1 can be efficiently operated
- p-spray (BPIX) or p-stop (FPIX) for n-side isolation

Motivation for New Readout Chip (ROC) Design

Current ROC at Layer 1:

- dead time free at low pixel hit rates, but
- up to 4% data loss at design luminosity
- up to 16% data loss at $2\times$ design lumi
- up to 50% loss at 2× DL @ 50 $\mathrm{ns!}$

```
Main data loss mechanisms beyond 1\times 10^{34}\,{\rm cm}^{-2}{\rm s}^{-1}:
```

- limits of hit transfer from pixel to double-column periphery
- overflows in time stamp and data buffers
- dead time of double columns waiting for readout
- saturation of data links

> require upgraded ROC & readout chain

New ROC Design: Additional Buffers and Digital Readout

- Evolution of current architecture
- Same 250 nm CMOS process
- Increased readout link speed
 - $\blacktriangleright~40\,{\rm MHz}$ analog $\rightarrow~160\,{\rm MHz}$ digital
 - twice the data throughput per fiber
- Reduced data loss by additional FIFO buffer stage and increased data and timestamp buffer sizes
- Enhanced analog performance:
 - lower charge thresholds possible: reduced internal cross-talk
 - reduction of time-walk effects: faster pixel cell comparator
 - \Rightarrow *in-time* threshold reduced: 3.5 ke $\rightarrow \sim 1.5$ ke
 - ⇒ improved performance in the presence of radiation damage

Time line

Hanno Perrey (DESY)

Phase I Upgrade of the CMS Pixel

VERTEX 2013 12 / 21

DESY Testbeam and Mimosa Pixel Telescope

- Telescope: 6 planes of Mimosa26 (MAPS) devices, $2\times1\,{\rm cm}^2$ area each, thinned to 50 μm (\rightarrow low material)
- Beam: $\mathcal{O}(\text{kHz})$ of $1 6 \,\text{GeV} \, e^{\pm}$
- Device under test (DUT): single chip module, rotatable (tilt/turn)
- 4.8 µm extrapolation error to DUT (at 4 GeV)
- REF = single chip module for timing
- Trigger: 4-fold scintillator coincidence

DESY Testbeam and Mimosa Pixel Telescope

Column Resolution Studies

- Column resolution versus turn angle (\rightarrow columns)
- \rightarrow Maps to rapidity
 - Telescope extrapolation uncertainty subtracted
 - Optimal angle: sharing between neighboring pixels
 - $atan(150 \, \mu m/285 \, \mu m) = 28^{\circ}$
 - resolution 10 µm at lowest threshold
 - Less threshold dependence at other angles

Row Resolution Studies

- Row resolution versus threshold
- ightarrow Maps to $\mathit{r}-\phi$
 - Tilted for optimal results (20°)
 - Telescope extrapolation uncertainty subtracted
 - Resolution degrades with higher thresholds
 - Resolution seems to saturate at $6\,\mu m$ for thresholds below $2\,\mathrm{ke}$
 - Threshold 4 $\rm ke \rightarrow 1.5 \, \rm ke:$ $\sim 2 \, \mu m$ improvement in row resolution

In-Pixel Studies: Ground Dot Grid and Charge Collection

- Ground-grid prevents pixels with poor bonding from floating to bias
- Grid clearly visible due to high tracking precision (~ 5 μm track resolution @DUT)
- 50% charge loss at perpend. incidence
- Only 10% loss with charge sharing (tilt) (note different color scale)
- Does not affect tracking efficiency at low threshold (1.5 ke)
- Hit still above threshold

Irradiated Samples

 Los Alamos National Laboratory, 800 MeV protons

Tracking Efficiency after Irradiation

- Single ROC module irradiated at CERN PS, 24 GeV protons
- $\phi = 3.77 \times 10^{14} \, \mathrm{p/cm^2}(\pm 7.6\%),$ $D = 130 \,\mathrm{kGv}$
- corresponds to Layer 4 after 500 $\rm fb^{-1}$ \Rightarrow
 - After irradiation / type inversion:
 - only partially depleted sensor volume at lower bias voltages
 - less charge collected (due to trapping/mobility)
 - Efficiency still high, since charge is collected at the implant side
 - fully efficient down to 70 V bias, half the charge is enough!
- \rightarrow "graceful exit"

Preparing for 4th-layer BPIX Production in Germany (I)

• Commissioning of in-house bump-bonding process at DESY and preliminary results on test structures:

Solder Ball Jetting

- PacTech SB² Jet
- Start with 40 µm diameter solder balls
- Drop through capillary towards pad
- Melt by laser pulse during fall.
- Solidify on pad.
- Up to 5 balls per second $\rightarrow \sim 4\,{\rm hours}$ per module

Preparing for 4th-layer BPIX Production in Germany (II)

- Precision ($< 1 \, \mu m$) automated flip chip bonder Femto from Finetech.
- Reflow soldering by chuck heating in formic acid atmosphere.
- Known-good-die probing before bonding.
- Detailed parameter logging.
- Installed at DESY and KIT.
- First tests successful!

Summary

- Upgrade of CMS pixel detector motivated by excellent performance of LHC as well as accumulated radiation damage
- Additional detector layers, reduced material budged and improved readout will maintain or even improve performance of current pixel detector at pile-up of 50 or higher
- Test beam studies of improved ROC show operation at lower threshold and high efficiency even in the presence of radiation damage.
- ROC and sensor submissions at hand, module production in preparation.
- Some important aspects of the upgrade not covered today: power system, cooling, DAQ, installation, ... → see TDR!

Detailed information publicly available

CMS Pixel Phase 1 Upgrade TDR:

https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?
docid=5669

Overview Backup Slides

6 BPIX Layout

- Adjustments for BPIX Layer 1
- 8 Pixel Module Layout
- 9 Future planned test beam campaigns
- 10 Testbeam Results for new Digital ROC
- 1 Pixel Tracker Construction Plans

Resolution of current pixel detector

BPIX Layout

layer	radius	facets	modules
4	160 mm	64	512
3	109 mm	44	352
2	68 mm	28	224
1	30 mm	12	96
			1184

- Upgraded barrel consists of 1184 rectangular modules of same type
- Arranged in four layers in two half-barrels
- Radius of innermost layer reduced by $\sim 1.5\,{\rm cm}$ \rightarrow new beam pipe
- Innermost layer replaceable without disconnecting other layers (foreseen after $250 \, {\rm fb}^{-1}$)

Adjustments for BPIX Layer 1

- Innermost barrel Layer 1 exposed to very high particle flux $(250\,{\rm MHz/cm^2})$
 - ▶ reduced mean radius of Layer 1 (4.4 cm \rightarrow 2.9 cm): factor two more particles cm⁻² s⁻¹
- Present architecture limited in terms of data transfer speeds and dead time while keeping trigger validated data
- Requires modified ROC design for Layer 1:
 - Column Drain Cluster algorithm: transfer 2 × 2 pixel cluster instead of individual hits; increase transfer clock speed to 40 MHz
 - more elaborate pointer logic in buffer management
- Requires two Token Bit Manager (TBM) per module to transmit data from ROCs
 - each L1 TBM outputs two 400 MHz encoded data streams simultaneously
 - \blacktriangleright need four fibers per module \rightarrow use already present spare fibers

Pixel Module Layout

- Upgraded pixel detector has only one type of sensor module w/ active area of $16.2\times 64.8\,\mathrm{mm^2}$
- Sensor is bump-bonded to 16 ROCs in two rows
- ROCs are connected and powered through a high density interconnect (HDI)
- The Token Bit Manager (TBM) controls the readout of the ROCs and distributes clock, trigger and resets

Future planned test beam campaigns

Irradiated Samples

- 2 ROCs irradiated at Karlsruhe Zyklotron ZAG
- Bump-bonding unirradiated sensor to separate effects
- 2 Chips with sensor irradiated at Los Alamos (800 ${\rm MeV}$ p), $\phi=1\times 10^{15}\,{\rm p/cm^2}$

Additional DESY test beams with

- Layer 1 ROC
- DESY-bump-bonded modules for production qualification

High-Rate Beam Tests

- Telescope with 8 CMS single module planes
- MT3 beam line (at Fermi lab) w/ 120 ${\rm GeV}$ protons, Oct. 9th 22nd
- Show capabilities of new ROC to cope with $400\,{\rm MHz/cm^2}$

Pixel Tracker Construction Plans

Larger project than previous pixel detector: need collaboration with additional production sites

- FPIX: US consortium
- BPIX mechanics, Layer 1+2, Layer 1 Replacement: Swiss consortium
- BPIX one-half Layer 3: INFN consortium
- BPIX one-half Layer 3: CERN, Taiwan, Finland consortium
- BPIX Layer 4: German consortium