NEW RESULTS FROM SEARCHES FOR NEW PHYSICS AT CMS

Maurizio Pierini CERN

1

Tuesday, February 26, 13

THE NEWCOMER

- A Higgs-like boson was found, close to the lower bound of the Higgs allowed mass range
- Not too heavy (eg for SUSY), but not that light
- Quite a special value. Do we live in a metastable vacuum? Is the quartic coupling zero @Plank

Tuesday, February 26, 13

GONATURAL?

the Higgs couplings (signal strength & BRs) could deviate from SM

If New Physics has something to do with making the Higgs light, we expect it @ TeV scale

• Natural SUSY

light stop & sbottom, direct or via gluino decays

• Extra dimensions (ADD, RS++)

high-mass KK partners (eg RS graviton to VV, *ll*, top pairs, etc)

Compositeness

exotic top partners lighter than 1 TeV

GONATURAL?

the Higgs couplings (signal strength & BRs) could deviate from SM

If New Physics has something to do with making the Higgs light, we expect it @ TeV scale

• Natural SUSY

light stop & sbottom, direct or via gluino decays Discussed Today

• Extra dimensions (ADD, RS++)

high-mass KK partners (eg RS graviton to VV, *et*, top pairs, etc)

• Compositeness Discussed Today

exotic top partners lighter than 1 TeV

Tuesday, February 26, 13

OR LIVING UNNATURAL?

5

the Higgs couplings (signal strength & BRs) are SM-like

If New Physics has nothing to do with making the Higgs light, we still expect it to give a DM candidate, and possibly unification

• Split SUSY

long-living particles, stopping gluinos, displaced vertices

Standard Model

We will keep setting limits on new physics for a while

OR LIVING UNNATURAL?

6

the Higgs couplings (signal strength & BRs) are SM-like

If New Physics has nothing to do with making the Higgs light, we still expect it to give a DM candidate, and possibly unification

• Split SUSY Discussed Today long-living particles, stopping gluinos, displaced vertices

• Standard Model

We will keep setting limits on new physics for a while

Tuesday, February 26, 13

NATURAL SUSY SEARCH: MULTI(B)JET+MET

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ETSUS-12-024$

 Hadronic search for SUSY in multijet+MET events with btags

Event Selection

≥ 3 jets with pT > 50 GeV and $|\eta| < 2.4$, ≥1 bjet, ≥2 jets with pT>70GeV Muon & Electron veto (pT > 10 GeV) Isolated track veto (pT > 15 GeV) $\Delta \hat{\Phi}^{\min} > 4.0$ (sideband used for QCD)

HT vs MET vs btag multiplicity 3D space binned MET = \$\sum E_T\$
 Control samples used to predict backgrounds with data + MC scale factors
 MET = \$\sum P_T\$ is the space binned of the space

8

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

Kinematic plane binned in 4x4 regions in slices of btag multiplicity

Bin	H _T (GeV)	E _T ^{miss} (GeV)
1	400 – 500 (HT1)	125 – 150 (MET1)
2	500 – 800 (HT2)	150 – 250 (MET2)
3	800 – 1000 (HT3)	250 – 350 (MET3)
4	> 1000 (HT4)	> 350 (MET4)

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

THE ENVIRONMENT CHALLENGE

Hadronic analyses in hadronic environment are challenging

No signal selection (e.g. photon, leptons) comes at rescue

Any possible detector effect is a potential signal (e.g. calorimeter spikes look like jet&MET to first sight)

And the high PU environment does not help

PARTICLE FLOW

Combine the information from all detectors to reconstruct single particles

Provides lists of particles (e,m,g, charged and neutral hadrons)

Improves HCAL resolution with tracker

Replace the HCAL granularity with tracker granularity (important for jet substructure)

PU CORRECTION WITH PF

13

- We have a wonderful tracker and a 4T magnetic field
- Jets are clustered from PF candidates
 (e,μ,γ,charged and neutral hadrons)
- Only the charged particles from the primary vertex are clustered. This removes the PU contribution from charged particles
- The neutral contribution is subtracted in average, using FASTJET

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ETSUS-12-024$

Observed distributions agree with MC prediction

Prediction not used in the analysis (illustration only)

Tuesday, February 26, 13

19 fb-1 $\mathcal{M}ULTI(B)JET+\mathcal{M}ET SUS-12-024$

19 fb-1 $\mathcal{M}ULT(B)JET+\mathcal{M}ETSUS-12-024$

Tuesday, February 26, 13

UNNATURAL SUSY SEARCH: HEAVY STABLE CHARGED PARTICLES

SPLIT SUSY & HSCP

- Split SUSY predicts a large mass gap between fermion (light) and scalar (heavy) sparticles
- The gluino travels through the detector as a Rhadron (hadronizig or interacting with the mateial), with or without electric charge
- We expect a slow particles traveling across the detector
 - Could start charged and become neutral (or vice versa) or stay charged all the way through (depending on what the gluon picks when hadronizing)

effective coupling suppressed by squark χ virtuality

HSCP IN CNS

Tracker only

Sensitive to any HSCP produced prompt (irrespective of what happens after) Uses dE/dX in tracker to separate signal from BKG

Muon Only

Sensitive to any HSCP crossing muon detector (irrespective of what happens before)

Uses TOF to separate signal from BKG

• Tracker + TOF

uses both (for HSCP crossing the detector)

19

de/dx in the tracker

- Measure the charge released in the tracker
- Compute ionization, which gives a measurement of p/m through charge-dependent empirical coefficients

20

Ih vs pT distributions provides S vs B discrimination

de/dx in the

 Additional discrimination from pvalue of MIP-ionization pdf (for data-driven BKG determination)

probability MIP to produce <= observed ionization $I_{as} = \frac{3}{N} \times \left(\frac{1}{12N} + \sum_{i=1}^{N} \left[P_i \times \left(P_i - \frac{2i-1}{2N} \right)^2 \right] \right)$

 Measurement of mass from the knowledge of I_h(p) [measured on data sideband]

TIME OF FLIGHT

- Use arrival time in the muon chambers to measure the TOF
- For a single hit determines β⁻¹

 $\beta^{-1} = 1 + \frac{c\delta_t}{L}$

• For a track, weighted average of the single hits

$$w_i = \frac{(n-2)}{n} \frac{L_i^2}{\sigma_{DT}^2}$$

$$w_i = \frac{L_i^2}{\sigma_i^2}$$

DTs (σ ~ 3 ns)

CSCs ($\sigma \sim 7$ ns for cathode, 9 ns for anode)

22

For both $\sigma(\beta^{-1}) \sim 0.07$

7Tev HEAVY ST +8TeV

10⁻¹

 10^{-2} 10⁻² 500 1000 500 1000 0 0 Mass (GeV/c2) Mass (GeV/c2) Tracker - Only CMS Preliminary √s=8 TeV, L=18.8 fb⁻¹ Tracker + TOF CMS Preliminary Vs=8 TeV, L=18.8 fb⁻¹ racks / 40 GeV/c² Tracks / 40 GeV/ c^2 Observed Observed Data-based SM prediction Data-based SM prediction 10 Gluino (M=1000 GeV/c²) • Use ionization and TC Stau (M=308 GeV/c2) 10 Tight at large m with data Selection Data driven ABCD me **10**⁻¹ **10**⁻¹ of uncorrelated variak 10⁻² 10⁻² 500 1000 500 1000 Mass (GeV/c2) Mass (GeV/c2)

10⁻¹

					Numbers of events				
		Selectio	n criteria		$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8 \text{ TeV}$		
	p_T (GeV/c)	$I_{as}^{(\prime)}$	$1/\beta$	Mass (GeV/c^2)	Pred.	Obs.	Pred.	Obs.	
				> 0	7.1 ± 1.5	8	32.5 ± 6.5	41	
tracker only	> 70	> 0.4	-	> 100	6.0 ± 1.3	7	26.0 ± 5.2	29	
tracker-only	> 70			> 200	0.65 ± 0.14	0	3.1 ± 0.6	3	
				> 300	0.11 ± 0.02	0	0.55 ± 0.11	1	
				> 400	0.030 ± 0.006	0	0.15 ± 0.03	0	
	> 70 >	> 0.125	> 1.225	> 0	8.5 ± 1.7	7	43.5 ± 8.7	42	
				> 100	1.0 ± 0.2	3	5.6 ± 1.1	7	
liacker+IOF		> 0.125		> 200	0.11 ± 0.02	1	0.56 ± 0.11	0	
and the second second				> 300	0.020 ± 0.004	0	0.090 ± 0.02	0	
muon-only	> 230	-	> 1.40	-	- /	1-	5.6 ± 2.9	3	
Q > 1e	-	> 0.500	> 1.200	-	0.15 ± 0.04	0	0.52 ± 0.11	1	
Q < 1e	> 125	> 0.275			0.12 ± 0.07	0	0.99 ± 0.24	0	

HEAVY STABLE CHARGED PARTICLES 7Tev EXO-12-026 +8TeV

7Tev HEAVY STABLE CHARGED PARTICLES +8TeV EXO-12-026

Final limit obtained combining 7TeV and 8TeV data

NEW RESONANCES

21 fb-1 DILEPTON SEARCHESEXO-12-061

 Pair of high-pT isolated leptons with same flavor (e,µ)

 Selection tuned to maximize significance. S vs B discrimination from m_{ee} shape

 Bkg shape taken from MC and normalized to data in the mass sideband [60,120] GeV

CMS Preliminary, s = 8 TeV, $\int L dt = 19.6 \text{ fb}^{-1}$ HIGH-PT LEPTONS

Leptons at high pT are different than standard leptons

pT resolution worse (better) for muons (electrons)

Energy deposits in the hadronic calorimeter could spoil isolation

Reconstruction and identification tuned differently

The effects are well model by the MC, as confirmed studying the em mass spectrum

21 fb-1 DILEPTON SEARCHESEXO-12-061

mZ'_{SSM} >2960 GeV mZ'_{Ψ} > 2600 GeV

 $V' \rightarrow \ell V SEARCHES EXO-12-060$ 20 fb⁻¹

- one muon (electron) with p_T> 45 GeV (E_T>100 GeV)
- Muon track-based isolation <15% for ΔR <0.3 and $\Delta p_T/p_T$ < 0.3
- Electron from isolated ECAL deposits matched to track. E_T from ECAL
- Fit MT distribution

 with empirical
 function to predict
 bkg on the tail

$$f(M_{\rm T}) = \frac{a}{(M_{\rm T}^3 + bM_{\rm T} + c)^d}$$

 $N' \rightarrow \ell V SEARCHES EXO-12-060$ 20 fb⁻¹

mW'_{SSM} >3350 GeV

FURTHER 2+MET INTERPRETATIONS 20 fb⁻¹ EXO-12-060

Tuesday, February 26, 13

DIJET SEARCH EXO-12-059

• Build two **wide jets** of $\Delta R=1.1$ around the two highest-pT jets

33

AntiKt jets R=0.5 with pT>40 GeV
Look for secondary jets with ΔR<1.1 around the two leading jets

- Widejet selection $|\eta_{wj}| < 2.5$, $|\Delta \eta_{wj}| < 1.3$
- Study the di-widejet mass spectrum: look for a bump on the falling QCD distribution
- No significant excess seen

20 fb⁻

20 fb⁻¹

DIJET SEARCH EXO-12-059

20 fb⁻¹

DIJET SEARCH EXO-12-059

- Model-independent xsec limit on generic qq, qg, and gg final states
- Limit compared to specific models to derive mass lower limits

DIJET SEARCH EXO-12-059

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.	
		[TeV]	[TeV]	
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]	
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]	
E ₆ Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]	
Axigluon (A)/Coloron (C)	qq	[1.20, 3.60] + [3.90, 4.08]	[1.20,3.87]	
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]	
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]	
Z' Boson (Z')	qā	[1.20,1.68]	[1.20,1.87]	
RS Graviton (G)	qq+gg	36 [1.20,1.58]	[1.20,1.43]	

Tuesday, February 26, 13

20 fb⁻¹

DIJET SEARCH EXO-12-059

Model	Final State	Obs. Mass Excl.	Exp. Mass Excl.	
		[TeV]	[TeV]	
String Resonance (S)	qg	[1.20,5.08]	[1.20,5.00]	
Excited Quark (q*)	qg	[1.20,3.50]	[1.20,3.75]	
E ₆ Diquark (D)	qq	[1.20,4.75]	[1.20,4.50]	
Axigluon (A)/Coloron (C)	qq	[1.20,3.60] + [3.90,4.08]	[1.20,3.87]	
Color Octet Scalar (s8)	gg	[1.20,2.79]	[1.20,2.74]	
W' Boson (W')	qq	[1.20,2.29]	[1.20,2.28]	
Z' Boson (Z')	qā	[1.20,1.68]	[1.20,1.87]	
RS Graviton (G)	qq+gg	³⁷ [1.20,1.58]	[1.20,1.43]	

Tuesday, February 26, 13

20 fb⁻¹

$(\mathbf{q}) \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q}$	$3pb-1 71$ $5 \& \Delta \eta < 1.3$ $(q) Y \times g \times (q) = 0$ $(q) Y \times ((q) = 0$ $(q) Y \times ((q) =$	Doloron	JECKS String F Excited Axigluo X' RS Grav 10 ⁻² 10 ⁻²	$\frac{1}{4} \underbrace{1}{4} \underbrace{1}$
E [TeV]	L [fb-1]	Resonance M minMass [GeV]	ass (GeV) TC minMass	Gluon-Gluon - Quark-Gluon 10 ⁴ Quark-Quark 1000 1500 2000 2500 3000 3500 4000 4500 Resonance Mass (GeV) Lower bound marginally
7	0,003	400	~ 200 pb	affected by the increase in
7	1	900	~ 1 pb	Thanks to the use of
7	5	1000	~ 1 pb	dedicated triggers running
8	3	1000	~ 0.6 pb	

FLEXIBILITY @HLT

Hardware L1 trigger interfaced to the detector (standard)

No L2/L3 trigger. Instead, softwarebased trigger running on PC farm

Running online a faster version of the offline reconstruction

In principle (and in practice) one could run the analysis selection online

This is what we do to keep the analyses as efficient as possible

~ 350 Hz of physics taken and reconstructed ~ 600 taken and parked for next year (not enough CPU @TO)

Run for 16h at the end of 2011 run (7TeV) Collected ~4 times the statistics we had in 2010 (35 pb⁻¹) with equivalent trigger Improved the limit published in 2010 by one order of magnitude Similar results @8TeV by Summer

Trigger rate ~ kHz for one trigger writing a reduced event content (HLT jet list)

NP SEARCHES IN THE HIGGS ERA

- We started the run searching for anything The LHC is a discovery machine, and CMS a multipurpose experiment
- We found something, and we have a better view on the "right" questions natural NP vs unnatural scenarios becoming quantitative
- The run is over, but there is still a lot to learn from these data new searches for specific scenarios, suggested by the Higgs discovery
- The first LHC run was a successful warmup no matter what the new searches will tell us
- But let's all keep in mind that this is a ~14 TeV machine and the best might still have to come

BACKUP

7Tev +8TeV

HSCP

EXO-12-026

					Numbers of events				
		Selectio	n criteria		$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8 \text{ TeV}$		
	p_T (GeV/c)	$I_{as}^{(\prime)}$	$1/\beta$	Mass (GeV/c^2)	Pred.	Obs.	Pred.	Obs.	
		> 0.4	_	> 0	7.1 ± 1.5	8	32.5 ± 6.5	41	
trackor only	> 70			> 100	6.0 ± 1.3	7	26.0 ± 5.2	29	
tracker-omy	> 70			> 200	0.65 ± 0.14	0	3.1 ± 0.6	3	
				> 300	0.11 ± 0.02	0	0.55 ± 0.11	1	
				> 400	0.030 ± 0.006	0	0.15 ± 0.03	0	
	> 70 >	> 0.125	> 1.225	> 0	8.5 ± 1.7	7	43.5 ± 8.7	42	
trackor TOE				> 100	1.0 ± 0.2	3	5.6 ± 1.1	7	
				> 200	0.11 ± 0.02	1	0.56 ± 0.11	0	
				> 300	0.020 ± 0.004	0	0.090 ± 0.02	0	
muon-only	> 230	-	> 1.40	-	_ /	/-	5.6 ± 2.9	3	
Q > 1e	-	> 0.500	> 1.200	-	0.15 ± 0.04	0	0.52 ± 0.11	1	
Q < 1e	> 125	> 0.275		-	0.12 ± 0.07	0	0.99 ± 0.24	0	

	Q < 1e	tracker-only	tracker+TOF	Q > 1e	muon-only	
Signal acceptance	< 31%	< 32%	< 31%	< 29%	< 13%	
Expected collision background	20%	20%	20%	20%	20%	
Expected cosmic background	50%	-	-		80%	
Integrated luminosity	$_{43}$ 2.2%(4.4%) for $\sqrt{s} = 7(8)$ TeV					

Tuesday, February 26, 13

7Tev +8TeV

HSCP

EXO-12-026

Mass	M cut	σ (pb)	$\sqrt{s} = 7$	TeV)	σ (pb)	$(\sqrt{s} = 8 \text{ TeV})$)	σ/σ_{th} (7	7+8 TeV)
(GeV/c^2)	(GeV/c^2)	Exp.	Obs.	Eff.	Exp.	Obs.	Eff.	Exp.	Obs.
Gluino ($f = 0.1$) particles with the tracker-only analysis									
300	> 100	0.0046	0.0063	0.17	0.0055	0.0055	0.15	3.7×10^{-5}	$4.6 imes 10^{-5}$
700	> 370	0.0028	0.003	0.21	7.7×10^{-4}	8.2×10^{-4}	0.19	0.0016	0.0017
1100	> 540	0.0039	0.0039	0.15	0.0011	0.0011	0.14	0.098	0.1
1500	> 530	0.0088	0.0081	0.07	0.0021	0.0022	0.07	5	5.4
	Glı	uino ch. s	uppr. (f	= 0.1)	particles with	n the tracker-o	only an	alysis	
300	> 130	0.035	0.036	0.02	0.013	0.013	0.05	1.1×10^{-4}	1.2×10^{-4}
700	> 340	0.012	0.013	0.05	0.0021	0.002	0.08	0.0044	0.0044
1100	> 410	0.018	0.018	0.03	0.0025	0.0026	0.06	0.24	0.24
1500	> 340	0.034	0.035	0.02	0.0045	0.0046	0.04	11	11
		Gluine	o(f = 0.5)	5) parti	cles with the	muon-only a	nalysis		
300	-	-	-	-	0.006	0.0065	0.06	5.8×10^{-5}	$6.3 imes 10^{-5}$
700		-	- / 1	-	0.0026	0.0022	0.12	0.0062	0.0051
1100	-	-	-	-	0.0024	0.002	0.13	0.24	0.2
1500	-	-	- 1	-	0.003	0.0024	0.11	7.5	6.2
		Gluine	p(f = 1.0))) parti	cles with the	muon-only a	nalysis		
300	-	-	-	-	0.0066	0.0077	0.05	6.4×10^{-5}	$7.4 imes 10^{-5}$
700	-	-	-	-	0.0032	0.0027	0.10	0.0075	0.0063
1100		-		-	0.003	0.0025	0.11	0.3	0.25
1500				(0.0037	0.0031	0.09	9.5	7.9

ABCD METHOD

x and y uncorrelated the observed yield in B,C, and D gives an estimate of A

 $N_A = N_B \times N_D / N_C$

MATERIAL BUDGET

HCAL: At eta=0 there is less than 6 interaction lengths of HCAL. ECAL provides an additional interaction length ECAL ~25 radiation length (23 cm crystals, 0.9 cm rad length)