

Report on activities in the GDE

Brian Foster (Oxford & GDE)

PECFA Meeting CERN 30/11/07

B. Foster - PECFA 11/07

Global Design Effort

1

Overview

- ILC parameters and overview of ILC RDR design
- Progress since last PECFA
 - definition and staffing of EDR Phase

• European situation and EU projects

• Summary and future prospects

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\int Ldt = 500 \text{ fb}^{-1}$ in 4 years

(corresponds to $2*10^{34}$ cm⁻² s⁻¹)

- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

ILC Reference Design Report ~700 Contributors from 84 Institutes

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture

LIST OF CONTRIBUTORS

3.00pm, May 4, 2007

Gerald Aarons⁴⁰, David Adey⁴⁰, Chris Adolpheen⁴⁰, Ilya Agapov⁵⁰, Jung-Keun Ahn⁵⁰ Mitsuo Akemono²⁴, Maria del Carmen Alaban³⁷, Michael Albrech⁷⁹, David Alexin⁵⁹ Jim Alexander²⁵, Wade Allison⁴¹, John Amann⁴⁰, Shono Anami²⁴, Terry Anderson Michael Anerella³, Deeps Angal-Kalinin^{12,6}, Sergie Antipov², Claire Antoine^{8,23} Bioh Appietoji 2.¹⁰, Salae Araki²⁴, Ting Arkan²⁴, Ned Arnold², Bag Appold²⁰, Xavier Artril²⁶, Alexander Aryshev²⁶, Frod Anin⁴⁰, David B. Angoulfe²⁶, Derik Baar Nigel Baddame³¹, Ian R. Badey^{12,25}, N. I. Badalykin²⁶, Jean-Loc Bhilly²¹, Maurice Bad Yagei Boshinar, Jan K. Bosky, N. J. Balaytin, "Jour Lie Janu", "Mainty B. Philip Banhade", Syuichi Ban¹⁴, Karl Bane", Balcul Baerine¹³, Soma Barbanott Desmond P. Barber^{14,217}, D. Yu. Bardin¹⁶, Barry Berkin¹²¹, Roper Barbar^{14,217}, Maura Barcos^{21,22}, Yuri Batygin¹⁰, D. Elwyn Baynlam², "Mat, Baerl^{12,4}, Leo Bellarg Paul Bellowo¹⁰, Lym D. Bentson¹⁰, Martin Bendra¹⁰, Simona Betton¹⁰, Vinod Bharabaa¹⁰, Marica Biagin¹⁰, Wilhelm Bialowata¹³, Thomas Bialow John Biarwayen⁴⁰, Alison Birch^{11,6}, Victoria Backmeel¹⁰, Grahame Biar¹⁰ Christian Boffo²¹, Courtlandt Bohn⁵⁰, V. I. Boiks³⁰, Bhuard N. Bondarchuk Columbia Door, Columbia Board, Y. J. Berger, Board, A. Doorman, M. Doorman, M. Shara, Booyd, P. Ster, B. Boord, B. Gordon, B. Ster, B. Bord, C. S. Bardhard, "Gerles Bowden," Gary Bower," Acod Brachman," J. Tom W. Brachman," J. Hang Peter Brand, "James Brach, "Steve Birker," And Brachman, "Ching Brookshy,", Tomoth A. Brookh, "James H. Browyell,", Métania Brachard, "Ching Brookshy,", Tomoth A. Brookhy, "James H. Browyell, "Metania Brachard, "Ching Brookshy,", Tomothy A. Brookhy, "James H. Browyell, "Metania Brachard, "Ching Brookshy,", Tomothy A. Brookhy, "Lange, James H. Browyell, "Metania Brachard, "Ching Brookshy,", Tomothy A. Brookhy, "Lange, James H. Browyell, "Metania Brachard, "Ching Brookshy, "Statement, Statement, Sta Chaig Brockaly¹⁰, Tasudty A. Boconi, Jamie H. Browyell¹⁷, Meanie Brachne¹, Heiser Bruck¹⁷, Annala J. Bramutty, Yu A. Biddyn¹⁰, Karten Bosset¹¹, Eugene Balyak¹⁴, Adriana Bonzult¹³, Craig Burkhart¹⁰, Pailip Barrows¹⁰, Greene Burt¹¹, David Burkon¹¹, Marian Gurkon¹¹, Craig Burkhart¹⁰, Pailip Barrows¹¹, Greene Burt¹¹, David Burkon¹¹, Marian Gurkon¹¹, Craig Burkhart¹⁰, Pailip Barrows¹¹, Greene Burt¹¹, David Burkon¹¹, Marian Charlen¹¹, Ohan Carconzon²⁴ F. Stephen Carr¹, Harg F. Casten¹¹, John Carles¹¹, John Carconzon²⁴ Response Consults¹¹, Milliam Charlen¹¹, Charlon Charlen¹¹, Jian Charlen¹¹, M. Chevalling¹¹, William Charlen¹¹, Dir Kowl¹¹, Don G. Charlon¹¹, Mille Carlen¹¹, David Burkon¹¹, Green M¹², Dan Gould¹¹, Johnson Charlon¹¹, James A. Garlon¹², Balasheh Charlen^{12,21}, Paul Cou¹¹, Johnson¹⁰, Course¹⁰, Charlon¹², Charlon¹², Charlon¹², Charlon¹², Charlon¹², Charlon¹¹, Charlon¹¹, Charlon¹¹, Charlon¹², Charlon¹², Charlon¹², Charlon¹², Charlon¹¹, Charlon¹², Charlon¹³, Charlon¹⁴, Charlon¹², Charlon¹², Charlon¹², Charlon¹², Charlon¹², Charlon¹³, Charlon¹⁴, Charlon¹⁴ Ed Dock¹⁰, Peter Conto^{12,15}, Lama Corner²¹, Chy Corvin⁴⁰, Curtis Crawford¹⁵, Lama A. Crittenden¹⁰, Hanid Dabiri Khah⁴¹, Olivier Dadoun¹⁰, Chris Damerell Michael Danilov³², Ken P. Davies⁶, Autonio de Lira⁶⁰, Stefano De Santis⁶⁰ Michael Danaw², Jen F (Dwine', Altonoo de Line', Medino De Santa', Laurene Bacca¹⁰, Jen F Verer Dahayo¹¹, Kinhaia Delerari¹⁰, Olivier Delerinied Yu, N. Doning¹⁰, Chefatopher J. Bendaan⁷, Guillaame Devand¹, Anno Dexter¹², Sathir Dani¹⁰, Bach Dollan¹⁰, George Ducas¹⁰, Robert Downing²⁷, Eric Doyle¹⁰ Alessandro Drago¹⁰, Alex Dogt¹², Alecondr Dorchelin²³, Geridd Dugun¹⁵, Vittor Daginov¹⁰, Here Edwarde²¹, Heise Burichman¹⁴, Michael Birlichman¹⁶, Univ. 2010, 199 Peder Elission¹¹, George Eliwood^{12,6}, Eckhard Elsen¹⁰, Louis Emery², Kamhiro En Kuninori Endo²⁸, Atsushi Enomoto²⁸, Fahien Eozinou⁸, Roger Erickson⁶⁰, Karen Fant Alberto Fasso⁶⁰, John Fehlberg⁵⁴, John Ferguson¹¹, J. Luis Fernandoz-Hernando¹² Ted Fieguth⁶⁰, Mike D. Fitton⁷, Mike Foley²¹, Richard Ford²¹, Brian Forter⁸¹ Horst Friedaam², Josef Frieda⁶⁰, Joef Fuerst², Masafumi Fukuda²⁴, Shigeki Fukuda²⁴ Yoshisato Funshashi²⁴, Warren Funk⁴², Kazuro Parukawa²⁴, Funio Furuta² Karsten Gadow¹⁸, Wei Gai², Fred Gannaway⁸¹, Jie Gao³¹, Peter Garbincius² Luis Garcia-Tabaros¹⁰, Terry Garvey²⁷, Edward Garwin⁶⁰, Martin Gastal¹¹, Lixin Ge⁰ Zheqiao Geng³¹, Scott Gerbäck², Rod Gerig², Lawrence Gibbona¹³, Allan Gillespie⁷

ii ILC-Reference Design Report

The RDR is not a full engineering design - it is conceptual; some aspects require R&D. Forms reliable basis for detailed engineering design & costing.

B. Foster - PECFA 11/07

Overall Layout

1st Stage: 500 GeV; central DR et al. campus; 2 "push-pull" detectors in 14 mrad IR.

The reference design was "frozen" on 1-12-06 for RDR production, including costs.

Important to realise this is a snapshot; design will continue to evolve, due to R&D, accelerator studies & value engineering.

The value costs have already been reviewed many times; all reviews have been very positive and generally consider there is scope for further cost reductions.

- The period since the formal publication of the RDR in August has been one of intensive internal reorganisation and preparation for the EDR phase.
- Major development has been the installation and staffing of the Project Management Office, led by M.Ross (Fermilab) (Chair), N. Walker (DESY) & A. Yamamoto (KEK).
- All positions in project office now essentially complete.

EDR phase management structure

B. Foster - PECFA 11/07

EDR phase - technical areas

• The EDR phase R&D will be divided into 15 technical areas:

				Technical Area		
	1.	Superconducting RF Technology	2.	Conventional Facilities & Siting and Global Systems	3.	Accelerator Systems
	1.1	Cavity Processing	2.1	Civil Engineering and Services	3.1	Electron Source
a Groups	1.2	Cavity Production and Integration	2.2	Conventional Facilities Process Management	3.2	Positron Source
Area	1.3	Cryomodules	2.3	Controls	3.3	Damping Ring
nical <i>A</i>	14	Cryogenics			3.4	Ring To Main Linac
Techr	1.5	High Level RF			3.5	Beam Delivery Systems
	1.6	Main Linac Integration			3.6	Simulations

EDR phase - SCRF

 SCRF is most crucial R&D area milestones:

High-gradient cavity performance at 35 MV/m with the specified production yield.	2010
ILC-like Cryomodule design, including optimization for: - thermal balance and cryogenics operation; - beam dynamics (component orientation and alignment)	2010
Operation of Cryomodules in all three regions	2010

EDR phase - SCRF

• Numbers of cavities available for test as function of FY in three regions:

Amoricas	FY06	FY07	FY08	FY09	FY10	TOTAL	FY11	FY12
Americas	(actual)	(actual)				ED-P		
Cavity orders - qualified vendors	8	12	18	40	40	108	40	40
Total 'process and test' cycles		40	60	90	115	276	120	120
Asia	FY06	FY07	FY08	EY0.)	FY10		FY11	FY12
Asia	(actual)	(actual)						
Cavity orders	8	7	15	25	15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Furope	2004- 08	2007	2008	2009	2010		2011	2012
Luiopo	(actual)	(actual)						
Cavity orders	60	5		838		898		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals		•						
Global totals - cavity fabrication	76	19	33	903	55	1065	79	79
Global totals - cavity tests	0	75	120	195	260	538	591	591

EDR phase - facilities

 Test facilities available or proposed for EDR era

Test Facility	Acronym	Purpose	Host Lab	Operation	Organized
				start	through:
Accelerator Test	ATF	Damping	KEK	1997	ATF
Facility		Ring			Collaboration
Beam Delivery	ATF2	Beam	KEK	2008	ATF
Test Facility		Delivery			Collaboration
Superconducting	STF	Main linac	KEK	2008	KEK
RF Test Facility					
TESLA Test	TTF /	Main linac	DESY	1997	TESLA
Facility/ Free	FLASH				Collaboration,
Electron Laser					DESY
Hamburg					
End Station A	ILC-	Machme Š	SLAC	2006	SLAC
	SLACESA	Detector			
		Interface			
ILC Test	ILCTA-	Main Linac	FNAL	2008	Fermilab
Accelerator	NML				
Cornell Test	CESR-TA	Damping	Cornell	2008	Cornell
Accelerator		Ring			

ilc

EDR phase - facilities

• Test facility deliverables and milestones

Test Facility	Deliverable	Date
ATF	Generation of 1 pm-rad low emittance beam	2009
ATF2	35 nm beam size; 2 nm rms beam stability	2010
STF	RF Unit demonstration	2011
FLASH	Full 10mA, 1 GeV, high-repetition rate operation	2008
ILC-	Energy spectrometer, energy spread and collimator tests	2008
SLACESA		
ILCTA-NML	RF Unit demonstration	2012
CESR-TA	Electron cloud mitigation tests	2010

• Estimated resources available - SCRF

Region	Country	Total SRFT	Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.		Region 📣	Country	Total SRFT	Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	
Americas	Canada								Ame in as	Canada							
	US	310	126	47	88	6	43			US	35015	20117	5538	8805	84	472	k\$
	EU (CERN, ESRF)	- 5				1	4	•		EU (CERN, ESRF)	129					129	k€
	France	100	100							France	10058	10058					k€
	Germany	67	37	8		8	14			Germany	2161	2009				152	k€
	Italy	48	38	8		1	1			Italy	1342	1182	160				k€
Europe	Poland	6	6						Europe	Poland	30	30					k€
Larope	Russia					.cV)		Europe	Russia							k\$
	Spain	3		3	\bigcirc					Spain	9		9				k€
	Sweden				X					Sweden							k€
	Switzerland									Switzerland							k€
	UK	6	4				2			UK	496.5	425				71.5	k€
	China	32	12	8	8	4				China	0						
Acia	India	36	24	12						India	2460	1560	900				
ASId	Japan	72	45	6	11	4	5		Asia	Japan	44.38	22.25	4.62	4.52	1.8	11.19	OY
	Korea	3	2	0	1					Korea	0						
Total SRFT		687	394	92	108	- 24	70		Total SRFT	1							

• LH - person-years -

RH M&S

EDR phase - participants

 Institutions with interest in Accelerator Systems work packages

Electron S	ource			
Americas	USA	SLAC, FNAL, Jlab		
Asia	Japan	Hiroshima U, KEK, Nagoya U		
Positron Source				
Americas	USA	ANL, BNL, Cornell, FNAL, LLNL, SLAC		
Asia	Japan	Hiroshima U, KEK		
	France	Orsay		
Europe	Germany	DESY		
	UK	Daresbury, Liverpool U., Durham U., Manchester U., RHUL		
	Ukraine	KIPT		
Damping F	Ring			
Americas	USA	ANL, Cornell U, FNAL, LBNL, SLAC		
	China	IHEP		
Asia	Japan	KEK		
	Korea	KNU N		
	Germany	DESY		
Europe	Italy	INFN		
	UK	Cockcroft Inst.		
RTML				
Americas	Canada	UBC		
Americas	USA	Cornell U., FNAL		
	China	IHEP		
Asia	Japan	KEK		
	Korea	KNU		
	Germany	DESY		
Europe	Russia	Efremov, JINR		
	UK	? (tbc)		

EDR phase - participants

 Institutions with interest in Accelerator Systems work packages

BDS		
	Canada	UBC
Americas	USA	BNL, Colorado U., FNAL, Iowa U., Jlab, LANL, LLNL, LBNL, MSU, Notre Dame U., SLAC, Wisonsin U., Yale Q .
	China	IHEP
Acia	India	BARC, RRCAT
Asia	Japan	KEK, Kyoto U., Tohoku U., Tokyo U.
	Korea	KNU, PAL
		CERN
	France	LAL/Orsay, LAPP, Saclay
	Germany	DESY
Europe	Russia	BINP, JINR, Moscow U.
	Spain	IFIC
	UK	Abertav U., Birmingham U., Cockcroft Inst., Cambridge U., Dundee U., IPPP Durham, Lancaster U., Liverpool U., Manchester U., Oxford U., RHUL, UCL
	Ukraine	KIPT
Simulation	1	
Americas	USA	Cornell U., FNAL, SLAC
	India	BARC, RRCAT
Asia	Japan	KEK
	Korea	KNU
		CERN
	France	LAL/Orsay
Europe	Germany	DESY
	UK	Cockcroft Inst., IPPP Durham, Liverpool U., Manchester U., Oxford U., RHUL

EDR phase - WP definition

• Workpackage definition - example cryomodule.

ID	title	description
1.3.1.	Standardization	Establish basic design parameters, plug compatible interface conditions, and high-pressure gas code (regulation) issues,
1.3.2.	Cooling pipe configuration	Calculation of pressure drops, definition of the maximum pressure, cooling procedure, new piping on the module transverse cross section.
1.3.3.	5-K shield	Calculation of thermal-balance with or w/o 5 K-shield Trade-off with cryogenics operation cost.
1.3.4.	Quadrupole Assembly	Quadrupole location, support, installation procedure, alignment, vibration, current leads,
1.3.5.	Assembly Process	Study of Assembly procedure, fixtures, facilities, Study of inter-connect procedure,
1.3.6.	Engineering design with CAD	Systematic engineering design using 2D/3D CAD, R&D for technically critical components such as Ti-SUS junction, vacuum components, etc.
1.3.7.	Systematic performance evaluation	Establish performance test contents, and procedure
1.3.8.	Transportation	Seek transportable cryomodule (region to region) Investigate transportation down to the tunnel through vertical shaft, with inclination (to save shaft size).
1.3.9.	Cost/Industrialization	Cost estimate based on BCD, and Industrialization effort (mass production and reducing the cost)

B. Foster - PECFA 11/07

- All of these details currently being finalised.
- Report will be submitted to FALC resources group on Wednesday for discussion there and at subsequent FALC meeting in Vancouver.

A New GDE

- Previous GDE was small and idiosyncratic. Some members were rather inactive; some very important high-profile jobs being done by non-members.
- GDE now reformed and reconstituted on basis of membership for all working more than 30% FTE - or with high-level responsibilities.
- New list exists currently 480 GDE members worldwide.

Global developments

- CCAST meeting in Beijing at start November:
 - Mostly Asian attendance, lively technical sessions and reports on world developments,
 B. Barish and BF also there . We met Chinese politicians and responsible for pp in Chinese ministry over dinner . Great interest in ILC involvement.
- Next ILC "general" meeting in Sendai Japan in March. Subsequent meeting in Europe is split: GDE will meet in Dubna and directly afterwards WWS will meet in Warsaw.

ilr iic

Global developments

- R. Orbach talked at Fermilab meeting in October.
 - great that he takes time to come to talk to us.
 He is always very supportive in his remarks.
 - he has domestic troubles
 - we now have to stick to rules of CD0, CD1 in DoE speak
 - US budget looks likely to be flat for next few years.

European situation

• FP7 calls:

....ir

- "Preparatory phase" is intended for projects on the ESFRI Road map; scheme is meant to take mature projects over the final threshold to construction. ILC is eligible since it is on the European particle physics roadmap, which was assimilated into the ESFRI roadmap. The EU Commission ruled that only 2 projects were sufficiently advanced to be eligible for PP funding: the LHC upgrade, and ILC.

European situation

• Goals:

<u>ilr</u>

Ìİ.

- "Political": prepare sites within Europe (including Russia) and explore with governments mechanisms for site proposal and selection; develop models for governance of an ILC laboratory - FALC Chair is a member of collaboration; develop outreach materials and strategies in many EU languages.
- "Technical": make 24 cavities integrated into ILC R&D programme; close interaction and synergy with XFEL facilities to build and test high-performance cavities and modules and to develop EU industrial capacity to produce substantial fraction of the ILC SC modules.

European situation

- Status:
 - Approved @5 MEuro level in the summer
 - E. Elsen opened contract negotiations in early September - as usual pp blazed the trail with all sorts of FP7 procedures, new software which of course did not work - new funding rules etc. Along the way, HiGrade caused all Oxford's FP7 project budgets to be recalled and rewritten.
 - Final details and budget submitted on 21.11.07.
 Awaiting Commission approval.

European situation

- In the nation states:
 - Germany continues to be major contributor to ILC, mostly in form of synergies with XFEL.
 - UK also continues to make important contributions but disquieting rumours on serious financial crisis in STFC
 - Hoping for increased French involvement now France approved for XFEL; Spanish effort also continuing.
 - Smaller but important work in a variety of other European countries.

;lr

İİL

Summary and Outlook

- Final RDR published in August and presented to ILCSC
 - represents enormous effort over last 18 months.
- EDR phase now underway. Great progress in getting structure together and populating positions. WPs should be allocated soon.
- As usual, positive and negative developments over different regions.
- Momentum being maintained and great progress continue.