(Some) BGO results Cecilia Voena INFN-Roma1

Runs, conditions, cuts

· Pions 200 GeV

runs 1613-1642 OSC1-ADC26 (Left,thin side) HV@1500 : Yellow filter OSC2-ADC25 (Right,thick side) HV@1800: UV filter OSC scale = 2ns/sample

· Electrons 50 GeV

runs 1681-1705 as above but HVLeft@1300 HVRight@1700 gate width closes 10ns after pulse start

Cuts:

remove events with clipped OSC signals 2sigma window in the beam chamber distributions

Pions

Some oscilloscope distributions

Cerenkov contribution from OSC

R1=Charge integrated in first N ns/All charge integrated Cerenkov contribution

From the average signal distributions:
(i.e. integrating run by run profile histos)

Cerenkov contribution from OSC(2)

R2=Charge integrated in first N ns/Charge integrated in [160,564]ns Cerenkov+Scint f Scint only

• From the average signal distributions:

Cerenkov contribution from OSC(3)

Total integrated charge vs theta

Cerenkov side (OSC2)

BGO decay time

Zero degrees 2ns/sample

OSC1 (Scintillation)

OSC2 (Cerenkov)

Electrons

Cerenkov contribution from OSC(1)

Ratios computed from profiles

Cerenkov contribution from OSC(2)

R1 12

Total integrated charge vs theta

Cerenkov side (OSC2)

Summary and to do list

- Can see Cerenkov light in BGO UV side using charge integrated in different time windows
- need to optimize the algorithm
- some open questions

Other things to do: Look to other scans Compare with MC

.