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THE ISSUE

1. INTERMITTENCY IS A SIGNAL OF SELF-SIMILARITY
OF THE PARTICLE SPECTRUM.

IDEAL SELF-SIMILARITY IS MANIFESTED BY
FLUCTUATIONS AT ALL SCALES. IN PRACTICE THERE
ARE OF COURSE LIMITS FROM BELOW AND FROM
ABOVE.

2. THE SIMPLEST MECHANISM IS A SELF-SIMILAR
CASCADE OF CLUSTERS: AT EACH STEP A CLUSTER
SPLITS INTO TWO CLUSTERS OF HALF-SIZE. THE
RATIO OF PARTICLE YIELD IN THE "DAUGTHER” TO
THAT OF THE "PARENT” IS A RANDOM NUMBER w.
IF THE DISTRIBUTION OF w IS INDEPENDENT OF THE
POSITION IN THE CASCADE, WE OBTAIN A SELF
SIMILAR OBJECT. THE RESULTING (VERY LARGE!)
FLUCTUATIONS FOLLOW A POWER LAW IN THE SCALE
AT WHICH THEY ARE MEASURED - SEE NEXT SLIDES.



EXAMPLE
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Figure: An example of the distribution obtained after 7 steps of a
cascade. At each step the bin is split into two bins of half-width, their
content multiplied randomly by wy = 1.6 and w, = 0.4, with probability
equal 1/2; <w >=1.



SIMPLE CASCADE

SUPPOSE THAT AT EACH LEVEL OF THE CASCADE A
CLUSTER IS SPLIT INTO TWO CLUSTERS OF
HALF-SIZE. THEN AFTER k STEPS WE FIND 2+
CLUSTERS OF SIZE § = A/2X WITH THE (RANDOM)
AVERAGE MULTIPLICITY GIVEN BY

A(k) = AO)W(K) = A(0)wiws...wy; k = log(A/8)/log2 (1)

WHERE w; GIVE THE CONTENT OF THE "DAUGHTER”
AT THE LEVEL / WITH RESPECT TO THE "PARENT”.

IF DISTRIBUTION OF w AT EACH BRANCHING IS THE
SAME, THE MOMENTS OF THIS DISTRIBUTION ARE

< WK >=<wf>..<w>=<w > <w>=1 (2)
IN TERMS OF ) WE HAVE

< [W(K)]" >=[A/8]";  f = log[< w" >]/log2 (3)



THE "THEORETICAL" MOMENTS
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Figure: " Theoretical” moments evaluated from 1000 events



THE "EXPERIMENTAL" MOMENTS
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Figure: " Experimental” moments evaluated from 1000 events



STATISTICAL NOISE

1. W(k) GIVES THE AVERAGE NUMBER OF PARTICLES
IN A GIVEN BIN.

=1

W(k) = n(k)/n(0) (4)
2. HOWEVER, THE ACTUALLY MEASURED NUMBER
OF PARTICLES, BEING AN INTEGER, FLUCTUATES

AROUND nj;

3. THIS "STATISTICAL NOISE” CAN BE
APPROXIMATED BY THE POISSON DISTRIBUTION
WITH THE AVERAGE n;.

4. THEREFORE THE ACTUAL DISTRIBUTION OF
PARTICLES IN A BIN / IS

—n;
P(nj; nj) = e~ in,-! (5)




FACTORIAL MOMENTS

1. FROM THE KNOWN PROPERTY OF THE POISSON
DISTRIBUTION WE GET AT A FIXED n:

[e.e]

Fr = Z n(n—1)...(n—r+1)e "

n=0

— A (6)

ﬁn
nl

THUS THE AVERAGE OVER FLUCTUATING n AT THE
LEVEL k GIVES

< [A(k)]" >=< F/ (k) > (7)

2. CONCLUSION: THE FACTORIAL MOMENT OF THE
OBSERVED PARTICLE DISTRIBUTION GIVE DIRECTLY
THE MOMENT OF THE DISTRIBUTION OF n.

THE STATISTICAL NOISE IS REMOVED!
(Bialas-Peschanski)



CORRELATION FUNCTIONS

1. FACTORIAL MOMENTS ARE INTEGRALS OF THE
CORRELATION FUNCTIONS

d3p1 d®py { / d3p r
H(8) = [ TP : £pr 8
2(6) E & p2(p1, P2) E p1(p) (8)

TO OBTAIN SINGULARITY IN F(5), p2(p1, p2) MUST
ALSO BE SINGULAR. TAKING

p2(p1, p2) ~ p1(p1)p1(p2)lp1 — p2| ™ 9)

WE HAVE: £(8) ~ 6617/52 ~ 5.

CONCLUSION: POWER LAW SINGULARITY IN £
IMPLIES POWER LAW SINGULARITY IN THE
CORRELATION FUNCTION. IT MAY THUS SIGNAL A
PHASE TRANSITION !

Ochs, Bialas-Seixas: Three-dimensional studies are
necessary!



CORRELATION FUNCTIONS
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Figure: Factorial moments F, versus the bin size § for various projected
distributions [Bialas-Seixas (90)].



PHASE TRANSITION
CONSIDER THE NORMALIZED FACTORIAL MOMENT f;:

d’p1 d°p; d*p -
f(0) = E E pr(p1, -, pr) U&Em(p)} (10)

TAKING

pr = p1(p1)--pr(pr)illP1 — p2llp2 — pal--|pr—1pr ]~ + perm} (11)
WE HAVE

f, v o[t o) e v = g = (r— D (12)

CONCLUSION: IN THE SECOND ORDER PHASE
TRANSITION, THE INTERMITTENCY EXPONENTS
FOLLOW THE SIMPLE RULE (12) (SIMPLE FRACTAL).

IN CASCADE THIS RULE IS GENERALLY NOT VALID.
[Bialas-Hwal



BOSE-EINSTEIN CORRELATIONS

OBSERVATION OF CHARGE DEPENDENCE INDICATES
THAT HBT CORRELATIONS DOMINATE THE EFFECTS.
THIS MAY HAVE INTERESTING CONSEQUENCES.

IF INDEED THE HBT CORRELATION FUNCTION

C(p1 — p2) SHOWS A POWER-LAW SINGULARITY, THEN
THE DISTRIBUTION OF THE SOURCE OF PARTICLES

Pp(x)|2 ~ / dge™ C(q) (13)

MUST ALSO EXIBIT A POWER-LAW SINGULARITY.

E.G., TAKING C(q) ~ [1 + |q|>L?/4]® WE HAVE (two
dimensions for simplicity)

PGP ~ P Ko [28); %= [x|/L (14)

FOR SMALL % |o(X)[2 ~ £21;
FOR LARGE %: |p(%)2 ~ %9-3/2¢-[24,



OUTLOOK

1. OBSERVATION OF POWER LAW DEPENDENCE OF
THE (NORMALIZED) FACTORIAL MOMENTS ON THE
RESOLUTION, SEEMS THE MOST EFFECTIVE WAY OF
FINDING THE POWER-LAW SINGULARITY IN THE
MULTI-PARTICLE SYSTEMS.

2. AT THE SECOND ORDER PHASE TRANSITION, THE
SYSTEM BECOMES A SIMPLE FRACTAL. IT IS
CHARACTERIZED BY THE INTERMITTENCY
EXPONENTS SATISFYING THE LINEAR RELATION

¢ =(r—1)a WITH o« INDEPENDENT OF .

3. IF THE EFFECT OF INTERMITTENCY IS RELATED
TO THE HBT CORRELATIONS, THEN THE SPACE-TIME
STRUCTURE OF THE SYSTEM SHOULD EITHER SHOW
STRONG (SELF-SIMILAR) FLUCTUATIONS OF THE
SIZE, OR EXIBIT THE FRACTAL NATURE (OR BOTH).



