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THE ISSUE

1. INTERMITTENCY IS A SIGNAL OF SELF-SIMILARITY
OF THE PARTICLE SPECTRUM.
IDEAL SELF-SIMILARITY IS MANIFESTED BY
FLUCTUATIONS AT ALL SCALES. IN PRACTICE THERE
ARE OF COURSE LIMITS FROM BELOW AND FROM
ABOVE.

2. THE SIMPLEST MECHANISM IS A SELF-SIMILAR
CASCADE OF CLUSTERS: AT EACH STEP A CLUSTER
SPLITS INTO TWO CLUSTERS OF HALF-SIZE. THE
RATIO OF PARTICLE YIELD IN THE ”DAUGTHER” TO
THAT OF THE ”PARENT” IS A RANDOM NUMBER w .
IF THE DISTRIBUTION OF w IS INDEPENDENT OF THE
POSITION IN THE CASCADE, WE OBTAIN A SELF
SIMILAR OBJECT. THE RESULTING (VERY LARGE!)
FLUCTUATIONS FOLLOW A POWER LAW IN THE SCALE
AT WHICH THEY ARE MEASURED - SEE NEXT SLIDES.



EXAMPLE
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Figure: An example of the distribution obtained after 7 steps of a
cascade. At each step the bin is split into two bins of half-width, their
content multiplied randomly by w1 = 1.6 and w2 = 0.4, with probability
equal 1/2; < w >= 1.



SIMPLE CASCADE
SUPPOSE THAT AT EACH LEVEL OF THE CASCADE A
CLUSTER IS SPLIT INTO TWO CLUSTERS OF
HALF-SIZE. THEN AFTER k STEPS WE FIND 2k

CLUSTERS OF SIZE δ = ∆/2k WITH THE (RANDOM)
AVERAGE MULTIPLICITY GIVEN BY

n̄(k) ≡ n̄(0)W (k) = n̄(0)w1w2...wk ; k = log(∆/δ)/ log 2 (1)

WHERE wi GIVE THE CONTENT OF THE ”DAUGHTER”
AT THE LEVEL i WITH RESPECT TO THE ”PARENT”.

IF DISTRIBUTION OF w AT EACH BRANCHING IS THE
SAME, THE MOMENTS OF THIS DISTRIBUTION ARE

< [W (k)]r >=< w r
1 > ... < w r

k >=< w r >k ; < w >= 1 (2)

IN TERMS OF δ WE HAVE

< [W (k)]r >= [∆/δ]fr ; fr = log[< w r >]/ log 2 (3)



THE ”THEORETICAL” MOMENTS
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Figure: ”Theoretical” moments evaluated from 1000 events



THE ”EXPERIMENTAL” MOMENTS
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Figure: ”Experimental”moments evaluated from 1000 events



STATISTICAL NOISE

1. W (k) GIVES THE AVERAGE NUMBER OF PARTICLES
IN A GIVEN BIN.

W (k) = n̄(k)/n̄(0) (4)

2. HOWEVER, THE ACTUALLY MEASURED NUMBER
OF PARTICLES, BEING AN INTEGER, FLUCTUATES
AROUND n̄i ;

3. THIS ”STATISTICAL NOISE” CAN BE
APPROXIMATED BY THE POISSON DISTRIBUTION
WITH THE AVERAGE n̄i .

4. THEREFORE THE ACTUAL DISTRIBUTION OF
PARTICLES IN A BIN i IS

P(ni ; n̄i ) = e−n̄i
n̄nii
ni !

(5)



FACTORIAL MOMENTS

1. FROM THE KNOWN PROPERTY OF THE POISSON
DISTRIBUTION WE GET AT A FIXED n̄:

Fr ≡
∞∑
n=0

n(n − 1)...(n − r + 1)e−n̄
n̄n

n!
= n̄r (6)

THUS THE AVERAGE OVER FLUCTUATING n̄ AT THE
LEVEL k GIVES

< [n̄(k)]r >=< Fr (k) > (7)

2. CONCLUSION: THE FACTORIAL MOMENT OF THE
OBSERVED PARTICLE DISTRIBUTION GIVE DIRECTLY
THE MOMENT OF THE DISTRIBUTION OF n̄.

THE STATISTICAL NOISE IS REMOVED!
(Bialas-Peschanski)



CORRELATION FUNCTIONS
1. FACTORIAL MOMENTS ARE INTEGRALS OF THE
CORRELATION FUNCTIONS

f2(δ) =

∫
δ

d3p1

E1

d3p2

E2
ρ2(p1, p2)

[∫
δ

d3p

E
ρ1(p)

]−2

(8)

TO OBTAIN SINGULARITY IN F2(δ), ρ2(p1, p2) MUST
ALSO BE SINGULAR. TAKING

ρ2(p1, p2) ∼ ρ1(p1)ρ1(p2)|p1 − p2|−α (9)

WE HAVE: f2(δ) ∼ δδ1−α/δ2 ∼ δ−α.
CONCLUSION: POWER LAW SINGULARITY IN f2
IMPLIES POWER LAW SINGULARITY IN THE
CORRELATION FUNCTION. IT MAY THUS SIGNAL A
PHASE TRANSITION !

Ochs, Bialas-Seixas: Three-dimensional studies are
necessary!



CORRELATION FUNCTIONS

Figure: Factorial moments F2 versus the bin size δ for various projected
distributions [Bialas-Seixas (90)].

Ochs, Bialas-Seixas: three-dimesional studies important.



PHASE TRANSITION

CONSIDER THE NORMALIZED FACTORIAL MOMENT fr :

fr (δ) =

∫
δ

d3p1

E1
...
d3pr
Er

ρr (p1, ..., pr )

[∫
δ

d3p

E
ρ1(p)

]−r
(10)

TAKING

ρr = ρ1(p1)...ρr (pr ){[|p1 − p2||p2 − p3|...|pr−1pr |]−α + perm} (11)

WE HAVE

fr ∼ δ[δ1−α]r−1δ−r ∼ δ−(r−1)α ≡ δ−φr → φr = (r − 1)α. (12)

CONCLUSION: IN THE SECOND ORDER PHASE
TRANSITION, THE INTERMITTENCY EXPONENTS
FOLLOW THE SIMPLE RULE (12) (SIMPLE FRACTAL).

IN CASCADE THIS RULE IS GENERALLY NOT VALID.
[Bialas-Hwa]



BOSE-EINSTEIN CORRELATIONS

OBSERVATION OF CHARGE DEPENDENCE INDICATES
THAT HBT CORRELATIONS DOMINATE THE EFFECTS.
THIS MAY HAVE INTERESTING CONSEQUENCES.
IF INDEED THE HBT CORRELATION FUNCTION
C (p1 − p2) SHOWS A POWER-LAW SINGULARITY, THEN
THE DISTRIBUTION OF THE SOURCE OF PARTICLES

|ρ(x)|2 ∼
∫

dqe iqxC (q) (13)

MUST ALSO EXIBIT A POWER-LAW SINGULARITY.

E.G., TAKING C (q) ∼ [1 + |q|2L2/4]−β WE HAVE (two
dimensions for simplicity)

|ρ(x)|2 ∼ x̂β−1Kβ−1[2x̂ ]; x̂ = |x |/L (14)

FOR SMALL x̂ : |ρ(x̂)|2 ∼ x̂2(β−1);
FOR LARGE x̂ : |ρ(x̂)|2 ∼ x̂β−3/2e−[2x̂].



OUTLOOK

1. OBSERVATION OF POWER LAW DEPENDENCE OF
THE (NORMALIZED) FACTORIAL MOMENTS ON THE
RESOLUTION, SEEMS THE MOST EFFECTIVE WAY OF
FINDING THE POWER-LAW SINGULARITY IN THE
MULTI-PARTICLE SYSTEMS.

2. AT THE SECOND ORDER PHASE TRANSITION, THE
SYSTEM BECOMES A SIMPLE FRACTAL. IT IS
CHARACTERIZED BY THE INTERMITTENCY
EXPONENTS SATISFYING THE LINEAR RELATION
φr = (r − 1)α WITH α INDEPENDENT OF r .

3. IF THE EFFECT OF INTERMITTENCY IS RELATED
TO THE HBT CORRELATIONS, THEN THE SPACE-TIME
STRUCTURE OF THE SYSTEM SHOULD EITHER SHOW
STRONG (SELF-SIMILAR) FLUCTUATIONS OF THE
SIZE, OR EXIBIT THE FRACTAL NATURE (OR BOTH).


