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1.  Standard cosmological model  
1.2. Background 
•  FLRW metric: homogeneous but not static 

•  Origin irrelevant, normalisation of a irrelevant 
 
•  2 physical quantitites: 
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•  Einstein: 

•  Friedmann 

•  Conservation of energy 
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ȧ

a
, RH =

c

H

Gµ⌫ = 8⇡G Tµ⌫

3


1

R2
c

+
1

R2
H

�
= 8⇡G ⇢

3H2 = 8⇡G ⇢� 3K

a2

⇢̇ = �3
ȧ
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•  Relevant densities: 

ln ρ 

ln a 

Inflation? 
Reheating? 
Diff. stages? 
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ȧ

a
, RH =

c

H

Gµ⌫ = 8⇡G Tµ⌫

3


1

R2
c

+
1

R2
H

�
= 8⇡G ⇢

3H2 = 8⇡G ⇢� 3K

a2

⇢̇ = �3
ȧ

a
(⇢+ p)

⇢r ⇢m ⇢K ⇢⇤ aeq a⇤ a0

� = dA✓

da =
�

✓
= a(te)

Z t0

te

dt

a(t)

a, t, ⌧

✓
d⌧ =

dt

a
= ±dr

◆
, z =

a0
a

� 1

1

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2

�
d✓2 + sin2 ✓d'2

��

Rc =
ap
K

H =
ȧ
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•  Distances depend on expansion; e.g. dA : 

•  Euclidian:  

•  FLRW: 

•  Time labelled by: 
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ȧ

a
(⇢+ p)

⇢r ⇢m ⇢K ⇢⇤ aeq a⇤ a0

� = dA✓

da =
�

✓
= a(te)

Z t0

te

dt

a(t)

a, t, ⌧

✓
d⌧ =

dt

a
= ±dr

◆
, z =

a0
a

� 1

1

3-5.02.2014 Cosmology in Planck era – J. Lesgourgues 7 



1.2. Thermodynamics: 
•  After BBN: baryonic matter = H+,  He++  (25% of mass)  

•  Neutral atoms cannot form (photo-dissociation) 

•  Then       He++ + e-   à      He+ 

                      He+ + e-    à     He 
                      H+ + e-      à     H                 z~1080   (recombination) 
 
•  Reionisation at z~10    (star formation) 
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•  High energy:   g  ßThomsonà  e-  ßCoulombà  b 
                                    Tightly coupled fluid 

•  Γ < H when ne drops during recombination: decoupling = recombination 
(CMB emission) 

•  Γ < H even after reionisation (dilution of free electrons): only 7% of CMB 
photons re-scatter 
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1.3. Linear perturbations 
•  Comoving Fourier wavelength                     , physical 

•  Radius of universe ~ O(RH)  : all observables modes sub-Hubble 

•  Decelerated expansion, modes cross from outside to inside Hubble radius: 

•  Modes all outside Hubble radius in the past 
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Super-Hubble 

Sub-Hubble 

Initial conditions 

ln k 

ln t 

Observable scales 
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•  Metric expansion: 

•  Gauge freedom (time slicing), Newtonian gauge:  

•  Matter perturbations: 

•  Scalar/vector/tensors under spatial rotations 

•  Einstein + Boltzmann for each species (b, cdm, γ, ν, …) 

                                                                         or interaction term 
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•  tightly coupled baryon-photon fluid with 

 
                 Baryon              Pressure        Newtonian             Dilation 
                damping       (acoust. waves)       force                   effect 
 
 
 
 
•  Acoustic oscillations because system places initially out of equilibrium: 
      
Super-H :                                                  Equilibrium :  
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•  in summary: 

ln k 

ln t 

eq 

dec 

Λ	



Stationary oscillations 

damped oscillations 

structure growth, δ~a, φ~constant 

damped structure growth, φ~decays 

3-5.02.2014 Cosmology in Planck era – J. Lesgourgues 14 



•  CMB spectrum in Sachs-Wolfe approximation: 
•  assume instantaneous decoupling, then free-streaming without 

interactions 

•  then                   conserved along each line-of-sight 

•  Sachs-Wolfe : 

•  Relation between                                   versus k 

                                                                     versus l , also called Cl 

            (using                  )  
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•  Correction from Doppler 

•  Correction from diffusion damping (Silk damping) 

•  Correction from reionisation 

•  Correction from gravitational effects along line-of-sight (Integrated Sachs-
Wolfe effect) 

 
… hence lots of intricated effects… but they are not degenerate at list in the 
standard cosmological model with 6 parameters: 
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2. Planck basic results 
     2.1. observation of temperature anisotropies 

3-5.02.2014 Cosmology in Planck era – J. Lesgourgues 23 

Frequency (GHz) 

•  Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month. 
•  75 detectors cover 9 frequency channels 

          detectors: 



2. Planck basic results 
     2.1. Observation of temperature anisotropies 
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LFI    |   HFI 

Frequency (GHz) 

CMB blackbody 

•  Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month. 
•  75 detectors cover 9 frequency channels 

          detectors: 
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•  Expansion of temperature map in spherical harmonic: 

•  Temperature spectrum in multipole space: 
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Planck Collaboration: Cosmological parameters

Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇥CDM model). The power spectrum at low multipoles (⇥ = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2013). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50 ⇥ ⇥ ⇥ 2500 (plotted on a linear multipole scale) we show the best-fit CMB
spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2013) after removal of unresolved foreground com-
ponents. The light grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width
�⇥ ⇤ 31 together with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes
contributions from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇥CDM
cosmology. The lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the
±1� errors on the individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the
change in vertical scale in the lower panel at ⇥ = 50.

3
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Planck Collaboration: Cosmological parameters

Planck Planck+lensing Planck+WP

Parameter Best fit 68% limits Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022242 0.02217 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.11805 0.1186 ± 0.0031 0.12038 0.1199 ± 0.0027

100✓MC . . . . . . . . 1.04122 1.04132 ± 0.00068 1.04150 1.04141 ± 0.00067 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0949 0.089 ± 0.032 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9675 0.9635 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . . . 3.098 3.103 ± 0.072 3.098 3.085 ± 0.057 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6964 0.693 ± 0.019 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3036 0.307 ± 0.019 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8285 0.823 ± 0.018 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.45 10.8+3.1

�2.5 11.37 11.1 ± 1.1

H0 . . . . . . . . . . . 67.11 67.4 ± 1.4 68.14 67.9 ± 1.5 67.04 67.3 ± 1.2

109As . . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.19+0.12
�0.14 2.215 2.196+0.051

�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14094 0.1414 ± 0.0029 0.14305 0.1426 ± 0.0025

⌦mh3 . . . . . . . . . 0.09597 0.09590 ± 0.00059 0.09603 0.09593 ± 0.00058 0.09591 0.09589 ± 0.00057

YP . . . . . . . . . . . 0.247710 0.24771 ± 0.00014 0.247785 0.24775 ± 0.00014 0.247695 0.24770 ± 0.00012

Age/Gyr . . . . . . . 13.819 13.813 ± 0.058 13.784 13.796 ± 0.058 13.8242 13.817 ± 0.048

z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.01 1090.16 ± 0.65 1090.48 1090.43 ± 0.54

r⇤ . . . . . . . . . . . 144.58 144.75 ± 0.66 145.02 144.96 ± 0.66 144.58 144.71 ± 0.60

100✓⇤ . . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04164 1.04156 ± 0.00066 1.04136 1.04147 ± 0.00062

zdrag . . . . . . . . . . 1059.32 1059.29 ± 0.65 1059.59 1059.43 ± 0.64 1059.25 1059.25 ± 0.58

rdrag . . . . . . . . . . 147.34 147.53 ± 0.64 147.74 147.70 ± 0.63 147.36 147.49 ± 0.59

kD . . . . . . . . . . . 0.14026 0.14007 ± 0.00064 0.13998 0.13996 ± 0.00062 0.14022 0.14009 ± 0.00063

100✓D . . . . . . . . . 0.161332 0.16137 ± 0.00037 0.161196 0.16129 ± 0.00036 0.161375 0.16140 ± 0.00034

zeq . . . . . . . . . . . 3402 3386 ± 69 3352 3362 ± 69 3403 3391 ± 60

100✓eq . . . . . . . . . 0.8128 0.816 ± 0.013 0.8224 0.821 ± 0.013 0.8125 0.815 ± 0.011

rdrag/DV(0.57) . . . . 0.07130 0.0716 ± 0.0011 0.07207 0.0719 ± 0.0011 0.07126 0.07147 ± 0.00091

Table 2. Cosmological parameter values for the six-parameter base ⇤CDM model. Columns 2 and 3 give results for the Planck
temperature power spectrum data alone. Columns 4 and 5 combine the Planck temperature data with Planck lensing, and columns
6 and 7 include WMAP polarization at low multipoles. We give best fit parameters as well as 68% confidence limits for constrained
parameters. The first six parameters have flat priors. The remainder are derived parameters as discussed in Sect. 2. Beam, calibration
parameters, and foreground parameters (see Sect. 4) are not listed for brevity. Constraints on foreground parameters for Planck+WP
are given later in Table 5.

3.2. Hubble parameter and dark energy density

The Hubble constant, H0, and matter density parameter, ⌦m,
are only tightly constrained in the combination ⌦mh3 discussed
above, but the extent of the degeneracy is limited by the e↵ect
of ⌦mh2 on the relative heights of the acoustic peaks. The pro-
jection of the constraint ellipse shown in Fig. 3 onto the axes
therefore yields useful marginalized constraints on H0 and ⌦m
(or equivalently ⌦⇤) separately. We find the 2% constraint on
H0:

H0 = (67.4 ± 1.4) km s�1 Mpc�1 (68%; Planck). (13)

The corresponding constraint on the dark energy density param-
eter is

⌦⇤ = 0.686 ± 0.020 (68%; Planck), (14)

and for the physical matter density we find

⌦mh2 = 0.1423 ± 0.0029 (68%; Planck). (15)

Note that these indirect constraints are highly model depen-
dent. The data only measure accurately the acoustic scale, and

the relation to underlying expansion parameters (e.g., via the
angular-diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation spectrum. Even
small changes in model assumptions can change H0 noticeably;
for example, if we neglect the 0.06 eV neutrino mass expected
in the minimal hierarchy, and instead take

P
m⌫ = 0, the Hubble

parameter constraint shifts to

H0 = (68.0 ± 1.4) km s�1 Mpc�1 (68%; Planck,
P

m⌫ = 0). (16)

3.3. Matter densities

Planck can measure the matter densities in baryons and dark
matter from the relative heights of the acoustic peaks. However,
as discussed above, there is a partial degeneracy with the spec-
tral index and other parameters that limits the precision of the
determination. With Planck there are now enough well measured
peaks that the extent of the degeneracy is limited, giving ⌦bh2 to
an accuracy of 1.5% without any additional data:

⌦bh2 = 0.02207 ± 0.00033 (68%; Planck). (17)
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2.2. Implications for ΛCDM 
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BBN 

2.3. Consistency with other experiments 
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BAO 

2.3. Consistency with other experiments Planck Collaboration: Cosmological parameters

from excess residuals at the µK2 level in the high-⌦ spectra rela-
tive to the best-fit AL = 1 �CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di⇤erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇥ z <⇥ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e⇤ective redshifts ze⇤ = 0.2 and ze⇤ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze⇤ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze⇤ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze⇤ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:

DV(z) =
�
(1 + z)2D2

A(z)
cz

H(z)

⇥1/3
. (46)

In the �CDM cosmology, the angular diameter distance to red-
shift z is

DA(z) =
c

H0
D̂A.

=
c

H0

1
|⇥K |1/2(1 + z)

sinK
⌅
|⇥K |1/2x(z,⇥m,⇥�)

⇧
, (47)

where

x(z,⇥m,⇥�) =
⇤ z

0

dz⌅

[⇥m(1 + z⌅)3 +⇥K(1 + z⌅)2 +⇥�]1/2 , (48)

and sinK = sinh for ⇥K > 0 and sinK = sin for ⇥K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di⇤erent groups fit and characterize BAO features in di⇤er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)

⌃
⇥mH2

0

cz
, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly� forest in large sam-
ples of quasars at a mean redshift of z ⇤ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly� BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly� results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base �CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1⇤ range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of ⌅m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1⇤ errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base �CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di⇤er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su⌅ciently accurate over the range of ⌅m and
⌅b allowed by the CMB in the base �CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended �CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze⇤ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
�CDM parameters from Planck. The grey band in Fig. 15
shows the ±1⇤ range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
�CDM model. To get a qualitative feel for how the BAO mea-
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Fig. 19. Posterior distributions for ⇥m (assuming a flat cosmol-
ogy) for the SNe compilations described in the text. The poste-
rior distribution for ⇥m from the Planck+WP+highL fits to the
base �CDM model is shown by the solid green line.

combining CMB and SNe data should therefore be treated with
caution.

5.5. Additional data

In this subsection we review a number of other astrophysical data
sets that have sometimes been combined with CMB data. These
data sets are not used with Planck in this paper, either because
they are statistically less powerful than the data reviewed in pre-
vious subsections and/or they involve complex physics (such as
the intra-cluster gas in rich clusters of galaxies) which is not yet
well understood.

5.5.1. Shape information on the galaxy/matter power
spectrum

Reid et al. (2010) present an estimate of the dark matter
halo power spectrum, Phalo(k), derived from 110,756 lumi-
nous red galaxies (LRGs) from the SDSS 7th data release
(Abazajian et al. 2009). The sample extends to redshifts z ⌅ 0.5,
and is processed to identify LRGs occupying the same dark
matter halo, reducing the impact of redshift-space distortions
and recovering an approximation to the halo density field. The
power spectrum Phalo(k) is reported in 45 bands, covering the
wavenumber range 0.02 h Mpc�1 < k < 0.2 h Mpc�1. The win-
dow functions, covariance matrix and CosmoMC likelihood mod-
ule are available on the NASA LAMBDA web site25.

The halo power spectrum is plotted in Fig. 20. The blue line
shows the predicted halo power spectrum from our best-fit base
�CDM parameters convolved with the Reid et al. (2010) win-
dow functions. Here we show the predicted halo power spec-
trum for the best-fit values of the “nuisance” parameters b0
(halo bias), a1, and a2 (defined in equation 15 of Reid et al.
2010) which relate the halo power spectrum to the dark mat-
ter power spectrum (computed using camb). The Planck model
gives ⇥2

LRG = 46.9 for 42 degrees of freedom and is an ac-
ceptable, though marginally worse, fit than the best-fit model

25http://lambda.gsfc.nasa.gov/toolbox/lrgdr.

Fig. 20. Band-power estimates of the halo power spectrum,
Phalo(k), from Reid et al. (2010) together with 1� errors. (Note
that these data points are strongly correlated.) The line shows
the predicted spectrum for the best-fit Planck+WP+highL base
�CDM parameters.

of Reid et al. (2010), which has ⇥2
LRG = 40.0. Interestingly, the

main di⇤erences between the two models are at wavenumbers
k >⇤ 0.1 h Mpc�1, where the nonlinear corrections to the matter
power spectrum become important.

Figure 20 shows that the Planck parameters provide a good
match to the shape of the halo power spectrum. However, we do
not use these data (in this form) in conjunction with Planck. The
BAO scale derived from these and other data is used with Planck,
as summarized in Sect. 5.2. As discussed by Reid et al. (2010,
see their figure 5) there is very little additional information on
cosmology once the BAO features are filtered from the spec-
trum, and hence little to be gained by adding this information to
Planck. The corrections for nonlinear evolution, though small in
the wavenumber range 0.1–0.2 h Mpc�1, add to the complexity
of using shape information from the halo power spectrum.

5.5.2. Cosmic shear

Another key cosmological observable is the distortion of distant
galaxy images by the gravitational lensing of large-scale struc-
ture, often called cosmic shear. The shear probes the (nonlinear)
matter density projected along the line of sight with a broad ker-
nel. It is thus sensitive to the geometry of the Universe and the
growth of large-scale structure, with a strong sensitivity to the
amplitude of the matter power spectrum.

The most recent, and largest, cosmic shear data sets are
provided by the CFHTLenS survey (Heymans et al. 2012;
Erben et al. 2012), which covers26 154 deg2 in five optical
bands with accurate shear measurements and photometric
redshifts. The CFHTLenS team has released several cosmic
shear results which are relevant to this paper. Benjamin et al.
(2012) present results from a two-bin tomographic analysis,
Heymans et al. (2013) from a finely binned tomographic anal-
ysis, and Kitching et al. (2013) from a 3D analysis.

Heymans et al. (2013) estimate shear correlation func-
tions associated with six redshift bins. Assuming a flat,
�CDM model, from the weak lensing data alone they find
�8 (⇥m/0.27)0.46±0.02 = 0.774 ± 0.04 (68% errors) which is con-

26Approximately 61% of the survey is fit for cosmic shear science.
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Fig. 19. Posterior distributions for ⇥m (assuming a flat cosmol-
ogy) for the SNe compilations described in the text. The poste-
rior distribution for ⇥m from the Planck+WP+highL fits to the
base �CDM model is shown by the solid green line.

combining CMB and SNe data should therefore be treated with
caution.

5.5. Additional data

In this subsection we review a number of other astrophysical data
sets that have sometimes been combined with CMB data. These
data sets are not used with Planck in this paper, either because
they are statistically less powerful than the data reviewed in pre-
vious subsections and/or they involve complex physics (such as
the intra-cluster gas in rich clusters of galaxies) which is not yet
well understood.

5.5.1. Shape information on the galaxy/matter power
spectrum

Reid et al. (2010) present an estimate of the dark matter
halo power spectrum, Phalo(k), derived from 110,756 lumi-
nous red galaxies (LRGs) from the SDSS 7th data release
(Abazajian et al. 2009). The sample extends to redshifts z ⌅ 0.5,
and is processed to identify LRGs occupying the same dark
matter halo, reducing the impact of redshift-space distortions
and recovering an approximation to the halo density field. The
power spectrum Phalo(k) is reported in 45 bands, covering the
wavenumber range 0.02 h Mpc�1 < k < 0.2 h Mpc�1. The win-
dow functions, covariance matrix and CosmoMC likelihood mod-
ule are available on the NASA LAMBDA web site25.

The halo power spectrum is plotted in Fig. 20. The blue line
shows the predicted halo power spectrum from our best-fit base
�CDM parameters convolved with the Reid et al. (2010) win-
dow functions. Here we show the predicted halo power spec-
trum for the best-fit values of the “nuisance” parameters b0
(halo bias), a1, and a2 (defined in equation 15 of Reid et al.
2010) which relate the halo power spectrum to the dark mat-
ter power spectrum (computed using camb). The Planck model
gives ⇥2

LRG = 46.9 for 42 degrees of freedom and is an ac-
ceptable, though marginally worse, fit than the best-fit model

25http://lambda.gsfc.nasa.gov/toolbox/lrgdr.

Fig. 20. Band-power estimates of the halo power spectrum,
Phalo(k), from Reid et al. (2010) together with 1� errors. (Note
that these data points are strongly correlated.) The line shows
the predicted spectrum for the best-fit Planck+WP+highL base
�CDM parameters.

of Reid et al. (2010), which has ⇥2
LRG = 40.0. Interestingly, the

main di⇤erences between the two models are at wavenumbers
k >⇤ 0.1 h Mpc�1, where the nonlinear corrections to the matter
power spectrum become important.

Figure 20 shows that the Planck parameters provide a good
match to the shape of the halo power spectrum. However, we do
not use these data (in this form) in conjunction with Planck. The
BAO scale derived from these and other data is used with Planck,
as summarized in Sect. 5.2. As discussed by Reid et al. (2010,
see their figure 5) there is very little additional information on
cosmology once the BAO features are filtered from the spec-
trum, and hence little to be gained by adding this information to
Planck. The corrections for nonlinear evolution, though small in
the wavenumber range 0.1–0.2 h Mpc�1, add to the complexity
of using shape information from the halo power spectrum.

5.5.2. Cosmic shear

Another key cosmological observable is the distortion of distant
galaxy images by the gravitational lensing of large-scale struc-
ture, often called cosmic shear. The shear probes the (nonlinear)
matter density projected along the line of sight with a broad ker-
nel. It is thus sensitive to the geometry of the Universe and the
growth of large-scale structure, with a strong sensitivity to the
amplitude of the matter power spectrum.

The most recent, and largest, cosmic shear data sets are
provided by the CFHTLenS survey (Heymans et al. 2012;
Erben et al. 2012), which covers26 154 deg2 in five optical
bands with accurate shear measurements and photometric
redshifts. The CFHTLenS team has released several cosmic
shear results which are relevant to this paper. Benjamin et al.
(2012) present results from a two-bin tomographic analysis,
Heymans et al. (2013) from a finely binned tomographic anal-
ysis, and Kitching et al. (2013) from a 3D analysis.

Heymans et al. (2013) estimate shear correlation func-
tions associated with six redshift bins. Assuming a flat,
�CDM model, from the weak lensing data alone they find
�8 (⇥m/0.27)0.46±0.02 = 0.774 ± 0.04 (68% errors) which is con-

26Approximately 61% of the survey is fit for cosmic shear science.
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Figure 31. Planck TE and EE polarisation spectra computed as described in the text, together with the polarisation spectra predicted
from the six-parameter �CDM model, fit only to the Planck temperature data.

where the signal correlations for the temperature component are
explicitly given by

⌥Ti1 Ti2� =
⌃max⇤

⌃=2

2⌃ + 1
4⇤

Ĉ⌃P⌃(�i1i2 ) + Ni1i2 . (23)

Here P⌃ are the Legendre polynomials, and �i1i2 is the
angle between the centres of pixels i1 and i2. Similar ex-
pressions are available for the polarisation correlations (e.g.,
Tegmark & de Oliveira-Costa 2001). The e⇥ect of the (azi-
muthally symmetric) instrumental beam, b⌃, and pixel window
function, w⌃, are encoded in Ĉ⌃ = Cth

⌃ b2
⌃w

2
⌃ .

The main problem with the likelihood expression given in
Eq. 21 is its high computational cost. This is determined by
the matrix inversion and determinant evaluations, both of which
scale as O(N3) with N = nT + 2nP. In practice, this approach is
therefore limited to coarse pixelizations, Nside ⌅ 16, which reli-
ably only supports multipoles below ⌃ � 30. On the other hand,
the Gaussian approximation adopted by the high-⌃ likelihood is
not su⇤ciently accurate for the stringent requirements of Planck
below ⌃ � 50. In the next section, we therefore describe a faster
low-⌃ likelihood estimator, based on Gibbs/MCMC sampling,
which allows us to exploit the full range up to ⌃ ⌅ 50 with
low computational cost, while additionally supporting physic-
ally motivated foreground marginalization.

Page et al. (2007) pointed out that the temperature and po-
larisation parts of the likelihood can be separated and evaluated
independently, under the assumption of negligible noise in tem-
perature and in the temperature-polarisation cross correlations
(i.e., the T Q and TU blocks of the pixel level noise covariance
matrices). Further assuming vanishing primordial B modes and
T B correlations, the T E correlations can be accounted for by
redefining the modified Q and U maps as

Q⇧ Q � 1
2

⌃max⇤

⌃=2

CT E
⌃

CTT
⌃

⌃⇤

m=�⌃
aT
⌃m

�
+2Y⌃m +�2 Y⇥⌃m

⇥
(24)

U ⇧ U � i
2

⌃max⇤

⌃=2

CT E
⌃

CTT
⌃

⌃⇤

m=�⌃
aT
⌃m

�
+2Y⌃m ��2 Y⇥⌃m

⇥
, (25)

where ±2Y⌃m are spin weighted spherical harmonics and aT
⌃m are

the harmonic coe⇤cients of the signal in the temperature map.
One can show by direct substitution that these modified Q and U
maps are free of temperature correlations. The polarisation like-
lihood can be then computed independently from the temperat-
ure likelihood and, possibly, at lower resolution to save compu-
tational expenses. We test this strategy in Sect. 8.2, and adopt it
for the current release of the Planck likelihood.

8.1. Low-⌃ temperature likelihood

As discussed above, we do not implement the likelihood ex-
pression given in Eq. 21 directly, due to its high computational
cost and limited flexibility with respect to foreground modelling.
Instead, we adopt the Gibbs sampling approach (Eriksen et al.
2004; Jewell et al. 2004; Wandelt et al. 2004), as implemented
by the Commander code (Eriksen et al. 2008), which allows
both for physically motivated component separation and accur-
ate likelihood estimation. A similar Gibbs sampling method was
used to estimate the low-⌃ temperature likelihood for WMAP
(Dunkley et al. 2009; Larson et al. 2011), although not simultan-
eously accounting for component separation.

8.1.1. Methodology

We start by generalizing the above data model to include both
multi-frequency observations and a set of foreground signal
terms,

d⇥ = s +
⇤

i

fi
⇥ + n⇥. (26)

Here d⇥ denotes the observed sky map at frequency ⇥, and fi
⇥

denotes a specific foreground signal component. As above, the
CMB field is assumed to be a Gaussian random field with power
spectrum C⌃, and the noise is assumed Gaussian with covari-
ance N⇥. The foreground model can be adjusted as needed for
a given data set, and a full description of the model relevant for
Planck is presented in Planck Collaboration XII (2013). In short,
this consists of a single low-frequency foreground component
(i.e., the sum of synchrotron, anomalous microwave emission,
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Table 8. Approximate constraints with 68% errors on ⇥m and
H0 (in units of km s�1 Mpc�1) from BAO, with ⇤m and ⇤b fixed
to the best-fit Planck+WP+highL values for the base �CDM
cosmology.

Sample ⇥m H0

6dF . . . . . . . . . . . . . . . . . . . . . . . . . 0.305+0.032
�0.026 68.3+3.2

�3.2
SDSS . . . . . . . . . . . . . . . . . . . . . . . 0.295+0.019

�0.017 69.5+2.2
�2.1

SDSS(R) . . . . . . . . . . . . . . . . . . . . . 0.293+0.015
�0.013 69.6+1.7

�1.5
WiggleZ . . . . . . . . . . . . . . . . . . . . . 0.309+0.041

�0.035 67.8+4.1
�2.8

BOSS . . . . . . . . . . . . . . . . . . . . . . . 0.315+0.015
�0.015 67.2+1.6

�1.5
6dF+SDSS+BOSS+WiggleZ . . . . . . 0.307+0.010

�0.011 68.1+1.1
�1.1

6dF+SDSS(R)+BOSS . . . . . . . . . . . 0.305+0.009
�0.010 68.4+1.0

�1.0
6dF+SDSS(R)+BOSS+WiggleZ . . . . 0.305+0.009

�0.008 68.4+1.0
�1.0

surements constrain parameters in the base �CDM model, we
form ⇥2,

⇥2
BAO = (x � x�CDM)T C�1

BAO(x � x�CDM), (50)

where x is the data vector, x�CDM denotes the theoretical pre-
diction for the �CDM model and C�1

BAO is the inverse covari-
ance matrix for the data vector x. The data vector is as fol-
lows: DV(0.106) = (457 ± 27) Mpc (6dF); rs/DV(0.20) =
0.1905 ± 0.0061, rs/DV(0.35) = 0.1097 ± 0.0036 (SDSS);
A(0.44) = 0.474 ± 0.034, A(0.60) = 0.442 ± 0.020, A(0.73) =
0.424±0.021 (WiggleZ); DV(0.35)/rs = 8.88±0.17 (SDSS(R));
and DV(0.57)/rs = 13.67±0.22, (BOSS). The o⇤-diagonal com-
ponents of C�1

BAO for the SDSS and WiggleZ results are given
in Percival et al. (2010) and Blake et al. (2011). We ignore any
covariances between surveys. Since the SDSS and SDSS(R) re-
sults are based on the same survey, we include either one set of
results or the other in the analysis described below, but not both
together.

The Eisenstein-Hu values of rs for the Planck and WMAP-9
base �CDM parameters di⇤er by only 0.9%, significantly
smaller than the errors in the BAO measurements. We can obtain
an approximate idea of the complementary information provided
by BAO measurements by minimizing Eq. (50) with respect to
either ⇥m or H0, fixing ⇤m and ⇤b to the CMB best-fit parame-
ters. (We use the Planck+WP+highL parameters from Table 5.)
The results are listed in Table 819.

As can be seen, the results are very stable from survey to
survey and are in excellent agreement with the base �CDM
parameters listed in Tables 2 and 5. The values of ⇥2

BAO are
also reasonable. For example, for the six data points of the
6dF+SDSS(R)+BOSS+WiggleZ combination, we find ⇥2

BAO =
4.3, evaluated for the Planck+WP+highL best-fit�CDM param-
eters.

The high value of ⇥m is consistent with the parameter anal-
ysis described by Blake et al. (2011) and with the “tension” dis-
cussed by Anderson et al. (2013) between BAO distance mea-
surements and direct determinations of H0 (Riess et al. 2011;
Freedman et al. 2012). Furthermore, if the errors on the BAO
measurements are accurate, the constraints on ⇥m and H0 (for
fixed ⇤m and ⇤b) are of comparable accuracy to those from
Planck.

19As an indication of the accuracy of Table 8, the full likelihood
results for the Planck+WP+6dF+SDSS(R)+BOSS BAO data sets give
⇥m = 0.308 ± 0.010 and H0 = 67.8 ± 0.8 km s�1 Mpc�1, for the base
�CDM model.

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat �CDM model con-
straints from Planck and WMAP-9.

The results of this section show that BAO measurements are
an extremely valuable complementary data set to Planck. The
measurements are basically geometrical and free from complex
systematic e⇤ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to Planck. In addition, BAO
measurements can be used to break parameter degeneracies that
limit analyses based purely on CMB data. For example, from
the excellent agreement with the base �CDM model evident in
Fig. 15, we can infer that the combination of Planck and BAO
measurements will lead to tight constraints favouring ⇥K = 0
(Sect. 6.2) and a dark energy equation-of-state parameter, w =
�1 (Sect. 6.5).

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e⇤ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base�CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base �CDM model, Hinshaw et al. (2012) find

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important
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•  exaggerated effect of a huge cluster: 

•  In fact, only 2’-3’ deflections, coherent 
over large scales: invisible by eye 

•  Lensing potential = projected 
gravitational field (with some kernel: 
sensitive to structures at z~1-3) 

•  Induces non-gaussianity with very 
specific correlations. Can be extracted 
with specific “quadratic estimator” (= 4-
point correlations) 

•  Proposed  by Hu & Okamoto (2001) 
First success in 2012 (SPT-ACT) 
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maps). To match the power spectrum of these simulations to the
power spectrum of the data maps, we find it is necessary to add
extragalactic foreground power following the model in Sect. 4,
with Acib = 18 µK2 and Asrc = 28 µK2. The resulting simula-
tions have a power spectrum which agrees with that of the CMB
map estimate based on the data to better than 2% at l < 2048.
This could be improved slightly by tailoring a specific correc-
tion for each map. We also add homogeneous pixel noise with a
level of 12 µK arcmin. If we neglected this power, the agreement
would be only at the 8% level, primarily due to the noise term
(the Acib and Asrc contributions are each at the level of 1 � 2%).
Due to the procedure which we use to subtract the disconnected
noise bias (Eq. 17) from our lensing power spectrum estimates,
the inclusion of these components does not significantly a�ect
our results, but comparison with the values used for our single-
frequency simulations in Sect. 4 are a useful indicator of the ex-
tent to which the foreground separation algorithms are able to
remove extragalactic foreground power in the high- regime.

As already discussed, our results on the component-
separated CMB maps are presented in Fig. 18. Because the
CMB and FFP6 noise components of the foreground-cleaned
map simulations are the same as those used to characterize
our fiducial lens reconstruction, we can measure the expected
scatter between the foreground separated maps and our fidu-
cial reconstruction. This scatter will be slightly overestimated
because we have not attempted to coherently model the con-
tribution to the reconstruction noise from residual di�use ex-
tragalactic foreground power. For the eight bins in 40 ⌅ L ⌅
400 on which our fiducial likelihood is based, we measure a
⇤2 for the di�erence between our fiducial reconstruction and
the corresponding foreground-cleaned reconstruction of ⇤2 =
(3.14, 4.3, 2.5, 14.7) for nilc, smica, sevem, and ruler respec-
tively. These ⇤2 values associated have probability-to-exceed
(PTE) values of (79%, 64%, 86%, 2%) respectively. At the level
which we are able to test, the nilc, smica, and sevem foreground-
cleaned maps give results which are quantitatively consistent
with our fiducial reconstruction. There is more scatter between
our fiducial reconstruction and the ruler map than expected
from simulations, as evidenced by a very high ⇤2 for the dif-
ference, however as can be seen in Fig. 18, there are not any
clear systematic di�erences. Indeed, the discrepancy for the bins
plotted in Fig. 18 (which di�er somewhat from the linear bins
used in our likelihood) is much less significant than for the bins
of our fiducial likelihood.

When using the component separated maps above, we have
used the same fsky = 0.7 Galactic mask as for our MV result, al-
though the confidence regions associated with each foreground
cleaned map allow more sky, ranging up to fsky = 0.94 for the
nilc method. We have used the metis pipeline (described later
in Sect. 7.5) to test whether this improved sky coverage could
benefit our lens reconstruction. The same method has been used
in (Planck Collaboration XII 2013) to evaluate possible biases
to lens reconstruction induced by these methods using the FFP6
simulated CMB realization, described in Planck Collaboration I
(2013), indicating that the di�erent component separation algo-
rithms do not alter significantly the lensing signal (at the level
which can be tested on a single simulation). Analyzing the nilc
map, which has the largest confidence region, we find that we
can increase the usable sky surface up to fsky = 0.87 without
encountering significant Galactic contamination. In Fig. 19 we
show the striking improvement in sky coverage on the nilc map.
smica and sevem are very similar; we have not considered ruler
because of its larger noise level.

Power spectrum estimates at this mask level show consis-
tency with the MV reconstruction within two standard devia-
tions of the measurement uncertainty. The increased sky cover-
age does not bring significant improvements in the error-bars of
the power spectrum, however. Using Eq. 20 as an estimate of the
power spectrum variance, the larger sky coverage yields only a
3.5% improvement at L < 40 over the MV result, decreasing
down to 0 at L = 400. This could be due to the di�erent weight-
ing used in the component separation compared to the one of
the MV map, which results in slightly noisier maps for our pur-
pose. While the component separated maps allow for a reduced
mask maintaining a robust lensing potential estimation, they lead
to a marginal improvement of the power spectrum uncertainties.
Nevertheless, their agreement with the MV result is reassuring.

MV, fsky = 0.70

nilc, fsky = 0.87

Fig. 19. Wiener-filtered potential maps in Galactic coordinates,
as in Fig. 8, plotted here in Mollweide projection. Top is the MV
reconstruction, bottom is an extended reconstruction on the nilc
component-separated map.

7.2. Point Source Correction

As can be seen in Table 1, the unresolved point source shot
noise correction in any individual band for our MV likelihood
is on the order of a few percent, reaching up to 6% for the
highest multipole bands. Averaged over the 40 ⌅ L ⌅ 400
band, the shot noise correction amounts to a 2% shift in the am-
plitude of Ĉ⇥⇥

L , which is small but non-negligible compared to
our statistical uncertainty of 4%. Physically, the amplitude of
our source corrections are reasonable; at 143 GHz we measure
Ŝ 4

143 = (1.3 ± 0.6) ⇥ 10�12 µK4. From the radio point source
model of De Zotti et al. (2010), this corresponds to an e�ec-
tive flux cut of approximately 150mJy at this frequency, roughly
comparable to that expected for the S/N > 5 cut we make when
masking sources in our fiducial analysis (Planck Collaboration
XXVIII 2013). The shot noise measured at 217 GHz is lower, as
expected given the smaller contribution from radio sources, with
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                                                     Lensing potential map: 
 
 
 
 
 
 
 
 
 
 
Low signal-to-noise, but correlates at high level with different tracers of LSS (20 sigma 
with NVSS quasars, 10 sigma with SDSS LRG, 42 sigma with Planck’s CIB) 
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2.3. Consistency with other data 

•  Lensing power spectrum consistent 
with ΛCDM 

•  Helps removing degeneracies and 
measuring extended model 
parameters with Planck alone 

 
 
 
 
 
 
 
 
 



3.  Inflation 
3.1. Causality 
3.2. Flatness 

3.3. Slow-roll 
3.4. Generation of perturbations 
3.5. Summary of predictions of simple inflationary model 
•     nearly flat universe 
•    super-Hubble correlations + coherent oscillations 
•   Gaussian statistics 
•    adiabatic initial conditions 
•   nearly scale-invariant primordial spectrum 
•    gravitational wave background 

3.5. Planck constraints on inflationary phase space 
3-5.02.2014 Cosmology in Planck era – J. Lesgourgues 39 

Can 
alternative 
theories 
predict 
theses? 



Tensors, spectral index and inflation 

•  Also OK: Hill-top with p=2 or p≥4; also disfavored: inverse power-law  
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, Higgs inflation 

V* < (1.94 x 1016 GeV)4  (95%CL) 



Inflation potential reconstruction 
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“observable window” of the inflaton potential, assuming that it can be  
Taylor-expanded inside this region at order n = 2, 3, 4 (units of true mP) 



4. Beyond minimal ΛCDM 
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photons, neutrinos 

baryons, cdm 

ωb~0.022,      ωm~0.142,   
need    ωdm~ 0.1199 ± 0.0027 (68%CL) :   44σ detection! 



•  Relevant densities: 

ln ρ 

ln a 

Inflation 
Reheating 
Other stages? 

ds2 = �dt2 + a2(t)


dr2

1�Kr2
+ r2

�
d✓2 + sin2 ✓d'2

��

Rc =
ap
K

H =
ȧ
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ȧ

a
, RH =

c

H

Gµ⌫ = 8⇡G Tµ⌫

3


1

R2
c

+
1

R2
H

�
= 8⇡G ⇢

3H2 = 8⇡G ⇢� 3K

a2

⇢̇ = �3
ȧ
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photons, neutrinos 

baryons, cdm 

ωγ fixed by TCMB,      ων by Tν ~ (4/11)1/3 Tγ,   
last assumption should be checked 



•  Relevant densities: 

ln ρ 
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baryons, cdm 

ΩΛ = 0.68±0.02,  
but is it really constant? 
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which favour higher values. Increasing the neutrino mass will
only make this tension worse and drive us to artificially tight
constraints on

⇧
m⇥. If we relax spatial flatness, the CMB ge-

ometric degeneracy becomes three-dimensional in models with
massive neutrinos and the constraints on

⇧
m⇥ weaken consider-

ably to

⌃
m⇥ <

�⌅⌅⇤
⌅⌅⇥

0.98 eV (95%; Planck+WP+highL)
0.32 eV (95%; Planck+WP+highL+BAO).

(73)

6.3.2. Constraints on Ne⇤

As discussed in Sect. 2, the density of radiation in the Universe
(besides photons) is usually parameterized by the e⇤ective neu-
trino number Ne⇤ . This parameter specifies the energy density
when the species are relativistic in terms of the neutrino tem-
perature assuming exactly three flavours and instantaneous de-
coupling. In the Standard Model, Ne⇤ = 3.046, due to non-
instantaneous decoupling corrections (Mangano et al. 2005).

However, there has been some mild preference for
Ne⇤ > 3.046 from recent CMB anisotropy measurements
(Komatsu et al. 2011; Dunkley et al. 2011; Keisler et al. 2011;
Archidiacono et al. 2011; Hinshaw et al. 2012; Hou et al. 2012).
This is potentially interesting, since an excess could be caused
by a neutrino/anti-neutrino asymmetry, sterile neutrinos, and/or
any other light relics in the Universe. In this subsection we dis-
cuss the constraints on Ne⇤ from Planck in scenarios where the
extra relativistic degrees of freedom are e⇤ectively massless.

The physics of how Ne⇤ is constrained by CMB anisotropies
is explained in Bashinsky & Seljak (2004), Hou et al. (2011)
and Lesgourgues et al. (2013). The main e⇤ect is that increasing
the radiation density at fixed �⇥ (to preserve the angular scales of
the acoustic peaks) and fixed zeq (to preserve the early-ISW ef-
fect and so first-peak height) increases the expansion rate before
recombination and reduces the age of the Universe at recombi-
nation. Since the di⇤usion length scales approximately as the
square root of the age, while the sound horizon varies propor-
tionately with the age, the angular scale of the photon di⇤usion
length, �D, increases, thereby reducing power in the damping tail
at a given multipole. Combining Planck, WMAP polarization and
the high-⌦ experiments gives

Ne⇤ = 3.36+0.68
�0.64 (95%; Planck+WP+highL). (74)

The marginalized posterior distribution is given in Fig. 27 (black
curve).

Increasing Ne⇤ at fixed �⇥ and zeq necessarily raises the ex-
pansion rate at low redshifts too. Combining CMB with distance
measurements can therefore improve constraints (see Fig. 27) al-
though for the BAO observable rdrag/DV(z) the reduction in both
rdrag and DV(z) with increasing Ne⇤ partly cancel. With the BAO
data of Sect. 5.2, the Ne⇤ constraint is tightened to

Ne⇤ = 3.30+0.54
�0.51 (95%; Planck+WP+highL+BAO). (75)

Our constraints from CMB alone and CMB+BAO are compati-
ble with the standard value Ne⇤ = 3.046 at the 1⇤ level, giving
no evidence for extra relativistic degrees of freedom.

Since Ne⇤ is positively correlated with H0, the tension be-
tween the Planck data and direct measurements of H0 in the base
⇥CDM model (Sect. 5.3) can be reduced at the expense of high
Ne⇤ . The marginalized constraint is

Ne⇤ = 3.62+0.50
�0.48 (95%; Planck+WP+highL+H0). (76)
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Fig. 27. Marginalized posterior distribution of Ne⇤ for
Planck+WP+highL (black) and additionally BAO (blue),
the H0 measurement (red), and both BAO and H0 (green).

For this data combination, the ⌅2 for the best-fitting model al-
lowing Ne⇤ to vary is lower by 5.0 than for the base Ne⇤ = 3.046
model. The H0 fit is much better, with �⌅2 = �4.0, but there
is no strong preference either way from the CMB. The low-⌦
temperature power spectrum does mildly favour the high Ne⇤
model (�⌅2 = �1.6) since Ne⇤ is positively correlated with ns
(see Fig. 24) and increasing ns reduces power on large scales.
The rest of the Planck power spectrum is agnostic (�⌅2 = �0.5),
while the high-⌦ experiments mildly disfavour high Ne⇤ in our
fits (�⌅2 = 1.3). Further including the BAO data pulls the cen-
tral value downwards by around 0.5⇤ (see Fig. 27):

Ne⇤ = 3.52+0.48
�0.45 (95%; Planck+WP+highL+H0+BAO). (77)

The ⌅2 at the best-fit for this data combination (Ne⇤ = 3.37)
is lower by 3.6 than the best-fitting Ne⇤ = 3.046 model. While
the high Ne⇤ best-fit is preferred by Planck+WP (�⌅2 = �3.3)
and the H0 data (�⌅2 = �2.8 giving an acceptable ⌅2 = 2.4
for this data point), it is disfavoured by the high-⌦ CMB data
(�⌅2 = 2.0) and slightly by BAO (�⌅2 = 0.4). We conclude
that the tension between direct H0 measurements and the CMB
and BAO data in the base ⇥CDM can be relieved at the cost of
additional neutrino-like physics, but there is no strong preference
for this extension from the CMB damping tail.

Throughout this subsection, we have assumed that all the
relativistic components parameterized by Ne⇤ consist of ordi-
nary free-streaming relativistic particles. Extra radiation com-
ponents with a di⇤erent sound speed or viscosity parame-
ter (Hu 1998) can provide a good fit to pre-Planck CMB
data (Archidiacono et al. 2013), but are not investigated in this
paper.

6.3.3. Simultaneous constraints on Ne⇤ and either
⇧

m⇥ or
me⇤
⇥, sterile

It is interesting to investigate simultaneous contraints on Ne⇤ and⇧
m⇥, since extra relics could coexist with neutrinos of size-

able mass, or could themselves have a mass in the eV range.
Joint constraints on Ne⇤ and

⇧
m⇥ have been explored sev-

eral times in the literature. These two parameters are known
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•  CMB alone (Planck+WP+HighL) 
 
    Neff = 3.36 ± 0.66   (95%CL) 
 
•  With lensing and BAO: 
 
   Neff = 3.30 ± 0.52   (95%CL) 
 
•  With H0 and BAO: 
 
   Neff = 3.53 ± 0.46   (95%CL) 
  
   Δχ2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4 

consequences on the evolution of cosmological perturbations, and for many
purposes they can be safely neglected.

3.2 Extra radiation and the effective number of neutrinos

Neutrinos fix the expansion rate during the cosmological era when the Universe
is dominated by radiation. Their contribution to the total radiation content
can be parametrized in terms of the effective number of neutrinos Neff [47,48],
through the relation

ρR =

[

1 +
7

8

(
4

11

)4/3

Neff

]

ργ , (11)

where ργ is the energy density of photons, whose value today is known from the
measurement of the CMB temperature. This equation is valid when neutrino
decoupling is complete and holds as long as all neutrinos are relativistic.

In Sec. 2 we saw that from accelerator data the number of active neutrinos
is three, while in the previous subsection we learned from the analysis of
neutrino decoupling these three active neutrinos contribute as Neff = 3.046.
Any departure of Neff from this last value would be due to non-standard
neutrino features or to the contribution of other relativistic relics.

A detailed discussion of cosmological scenarios where Neff is not fixed to three
can be found in the reviews [6,49], while the particular case of active-sterile
neutrino mixing was recently analyzed in [50]. Since in the present work we
focus on the standard case of three active neutrinos, here we only give a brief
review of the most recent bounds on Neff from cosmological data.

The value of Neff is constrained at the BBN epoch from the comparison of
theoretical predictions and experimental data on the primordial abundances
of light elements, which also depend on the baryon-to-photon ratio ηb = nb/nγ

(or baryon density). The main effect of Neff is to fix the Hubble expansion rate
through its contribution to the total energy density. This in turn changes the
freezing temperature of the neutron-to-proton ratio, therefore producing a
different abundance of 4He.

The BBN bounds on Neff have been recently reanalyzed taking in input the
value of the baryon density derived from the WMAP first year data [51]
ηCMB = 6.14 ± 0.25. In Fig. 4 we show the results from [36], where the al-
lowed range Neff = 2.5+1.1

−0.9 (95% CL) was inferred from data on light element
abundances (see also [52–54] and [55] for a recent review on BBN). This range
is perfectly compatible with the standard prediction of 3.046. However, the

13
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•  CMB alone (Planck+WP+HighL) 
 
    Neff = 3.36 ± 0.66   (95%CL) 
 
•  With lensing and BAO: 
 
   Neff = 3.30 ± 0.52   (95%CL) 
 
•  With H0 and BAO: 
 
   Neff = 3.53 ± 0.46   (95%CL) 
  
   Δχ2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4 

Relativistic d.o.f. (Neff) 
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between ⇥m and ⇥� due to the e⇤ect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.

6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

�
m� (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

�
m� must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di⇤erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e⇤ects of masses in the primary power
spectra are small. The main e⇤ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e⇤ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e⇤ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >� 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e⇤ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ⇧ = 1000 the suppres-
sion is around 10% in power for

�
m� = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e⇤ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of

⇥
m� < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e⇤ect leading to the
constraint is gravitational lensing, we remove the lensing infor-

41

CMB alone (Planck+WP+HighL), 
despite geometrical degeneracy: 
 
100Ωk = -4.2 ± 4.5   (95%CL) 
 
 
With lensing and BAO: 
 
100Ωk = -0.10 ± 0.63   (95%CL) 
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•  ρ ~ mP
4  ~ (1028eV)4  or  msusy

4 or mEW
4 ~ (1011eV)4 from radiative corrections to vacuum energy 

•  Δρ ~ mEW
4 ~ (1011eV)4  or  mQCD

4 ~ (108eV)4  variations of vacuum energy during phase transitions  

log ρ	
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•  constant w: 
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Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from �3 to �0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s�1 Mpc�1 on H0. The dashed grey line indicates
the cosmological constant solution, w = �1.

which is in tension with w = �1 at more than the 2� level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base �CDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base �CDM model, so there is no significant
preference for w � �1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower ⇥ in the �CDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < �1.

The constant w models are of limited physical interest. If
w � �1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 � a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
evolution of w(a) can lead to distinctive imprints in the CMB
(Caldwell et al. 1998) which would show up in the Planck data.

Figure 35 shows contours of the joint posterior distribution in
the w0–wa plane using Planck+WP+BAO data (colour-coded ac-
cording to the value of H0). The points are coloured by the value
of H0, which shows a clear variation with w0 and wa reveal-
ing the three-dimensional nature of the geometric degeneracy in
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Fig. 35. 2D marginalized posterior distribution for w0 and wa
for Planck+WP+BAO data. The contours are 68% and 95%,
and the samples are colour-coded according to the value of H0.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
are assumed. Dashed grey lines show the cosmological constant
solution w0 = �1 and wa = 0.

such models. The cosmological constant point (w0,wa) = (�1, 0)
lies within the 68% contour and the marginalized posteriors for
w0 and wa are

w0 = �1.04+0.72
�0.69 (95%; Planck+WP+BAO), (94a)

wa < 1.32 (95%; Planck+WP+BAO). (94b)

Including the H0 measurement in place of the BAO data moves
(w0,wa) away from the cosmological constant solution towards
negative wa at just under the 2� level.

Figure 36 shows likelihood contours for (w0,wa), now
adding SNe data to Planck. As discussed in detail in Sect. 5,
there is a dependence of the base �CDM parameters on the
choice of SNe data set, and this is reflected in Fig. 36. The re-
sults from the Planck+WP+Union2.1 data combination are in
better agreement with a cosmological constant than those from
the Planck+WP+SNLS combination. For the latter data combi-
nation, the cosmological constant solution lies on the 2� bound-
ary of the (w0,wa) distribution.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe
at early times. Such early dark energy (EDE; Wetterich 2004)
models may be very close to �CDM recently, but have a non-
zero dark energy density fraction, ⇥e, at early times. Such mod-
els complement the (w0,wa) analysis by investigating how much
dark energy can be present at high redshifts. EDE has two main
e⇤ects: it reduces structure growth in the period after last scat-
tering; and it changes the position and height of the peaks in the
CMB spectrum.

The model we adopt here is that of Doran & Robbers (2006):

⇥de(a) =
⇥0

de �⇥e(1 � a�3w0 )
⇥0

de +⇥
0
ma3w0

+⇥e(1 � a�3w0 ) . (95)

It requires two additional parameters to those of the base�CDM
model: ⇥e, the dark energy density relative to the critical den-
sity at early times (assumed constant in this treatment); and the
present-day dark energy equation of state parameter w0. Here⇥0

m
is the present matter density and⇥0

de = 1�⇥0
m is the present dark
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•  varying w(a) (linear): 
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Planck Collaboration: Cosmological parameters
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Fig. 36. 2D marginalized posterior distributions for w0 and
wa, for the data combinations Planck+WP+BAO (grey),
Planck+WP+Union2.1 (red) and Planck+WP+SNLS (blue).
The contours are 68% and 95%, and dashed grey lines show the
cosmological constant solution.

energy abundance (for a flat Universe). Note that the model of
Eq. (95) has dark energy present over a large range of redshifts;
the bounds on ⇥e can be substantially weaker if dark energy is
only present over a limited range of redshifts (Pettorino et al.
2013). The presence or absence of dark energy at the epoch of
last scattering is the dominant e⇤ect on the CMB anisotropies
and hence the constraints are insensitive to the addition of low
redshift supplementary data such as BAO.

The most precise bounds on EDE arise from the analysis
of CMB anisotropies (Doran et al. 2001; Caldwell et al. 2003;
Calabrese et al. 2011; Reichardt et al. 2012; Sievers et al.
2013; Hou et al. 2012; Pettorino et al. 2013). Using
Planck+WP+highL, we find

⇥e < 0.009 (95%; Planck+WP+highL). (96)

(The limit for Planck+WP is very similar: ⇥e < 0.010.) These
bounds are consistent with and improve the recent ones of
Hou et al. (2012), who give ⇥e < 0.013 at 95% CL, and
Sievers et al. (2013), who find ⇥e < 0.025 at 95% CL.

In summary, the results on dynamical dark energy (except for
those on early dark energy discussed above) are dependent on
exactly what supplementary data are used in conjunction with
the CMB data. (Planck lensing does not significantly improve
the constraints on the models discussed here.) Using the direct
measurement of H0, or the SNLS SNe sample, together with
Planck we see preferences for dynamical dark energy at about
the 2⇥ level reflecting the tensions between these data sets and
Planck in the�CDM model. In contrast, the BAO measurements
together with Planck give tight constraints which are consistent
with a cosmological constant. Our inclination is to give greater
weight to the BAO measurements and to conclude that there is
no strong evidence that the dark energy is anything other than a
cosmological constant.

6.6. Dark matter annihilation

Energy injection from dark matter (DM) annihilation can
change the recombination history and a⇤ect the shape of
the angular CMB spectra (Chen & Kamionkowski 2004;

Padmanabhan & Finkbeiner 2005; Zhang et al. 2006;
Mapelli et al. 2006). As recently shown in several papers
(see e.g., Galli et al. 2009, 2011; Giesen et al. 2012; Hutsi et al.
2011; Natarajan 2012) CMB anisotropies o⇤er an opportunity
to constrain DM annihilation models.

High-energy particles injected in the high-redshift thermal
gas by DM annihilation are typically cooled down to the keV
scale by high energy processes; once the shower has reached
this energy scale, the secondary particles produced can ion-
ize, excite or heat the thermal gas (Shull & van Steenberg 1985;
Valdes et al. 2010); the first two processes modify the evolution
of the free electron fraction xe, while the third a⇤ects the tem-
perature of the baryons.

The rate of energy release, dE/dt, per unit volume by a relic
annihilating DM particle is given by

dE
dt

(z) = 2 g �2
cc2⇥2

c(1 + z)6 pann(z), (97)

where pann is, in principle, a function of redshift z, defined as

pann(z) ⇤ f (z)
⌅⇥v⇧
m⇤
, (98)

where ⌅⇥v⇧ is the thermally averaged annihilation cross-section,
m⇤ is the mass of the DM particle, �c is the critical density of
the Universe today, g is a degeneracy factor equal to 1/2 for
Majorana particles and 1/4 for Dirac particles (in the following,
constraints will refer to Majorana particles), and the parameter
f (z) indicates the fraction of energy which is absorbed overall
by the gas at redshift z. We note that the presence of the brackets
in ⌅⇥v⇧ denote a thermal average over the velocity distribution
of particles.

In Eq. (98), the factor f (z) depends on the details of the
annihilation process, such as the mass of the DM particle and
the annihilation channel (see e.g., Slatyer et al. 2009). The func-
tional shape of f (z) can be taken into account using gen-
eralized parameterizations (Finkbeiner et al. 2012; Hutsi et al.
2011). However, as shown in Galli et al. (2011), Giesen et al.
(2012), and Finkbeiner et al. (2012) it is possible to neglect the
redshift dependence of f (z) to first approximation, since current
data shows very little sensitivity to variations of this function.
The e⇤ects of DM annihilation can therefore be well parameter-
ized by a single constant parameter, pann, that encodes the de-
pendence on the properties of the DM particles.

We compute here the theoretical angular power in the pres-
ence of DM annihilations, by modifying the RECFAST routine
in the camb code as in Galli et al. (2011) and by making use
of the package CosmoMC for Monte Carlo parameter estimation.
We checked that we obtain the same results by using the CLASS
Boltzmann code (Lesgourgues 2011a) and the Monte Python
package (Audren et al. 2012), with DM annihilation e⇤ects cal-
culated either by RECFAST or HyRec (Ali-Haimoud & Hirata
2011), as detailed in Giesen et al. (2012). Besides pann, we sam-
ple the parameters of the base �CDM model and the fore-
ground/nuisance parameters described in Sect. 4.

From Planck+WP we find

pann < 5.4 ⇥ 10�6 m3 s�1 kg�1 (95; Planck+WP). (99)

This constraint is weaker than that found from the full
WMAP9 temperature and polarization likelihood, pann < 1.2 ⇥
10�6 m3s�1kg�1 because the Planck likelihood does not yet in-
clude polarization information at intermediate and high multi-
poles. In fact, the damping e⇤ect of DM annihilation on the
CMB temperature power spectrum is highly degenerate with
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Neutrino mass 
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•  Neutrino oscillation experiments: Σmν > 0.06 eV 
 

 

•  CMB alone (Planck+WP+HighL): 

	

Σmν < 0.66eV  (95%CL) 

•  With BAO: 

	

Σmν < 0.23eV  (95%CL) 

•  With lensing: 

	

Σmν < 0.85eV  (95%CL) 



Variations of fine-structure constant 
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All experiments (atomic clocks, 
geological radioactivity, BBN, 
etc.) consistent with no 
variations, excepted quasar 
absorption lines  
(Webb et al. 2001, Murphy et al. 2003) 



Topology 
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•  Search for matching circles 
•  Search for specific patterns for flat spaces with cubic toroidal (T3), equal-sided 

chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant 
positive curvature (dodecahedral, truncated cube and octahedral) and two compact 
negative-curvature spaces 

•  Search for Bianchi VIIh cosmology 

                                      simulated maps with matching circles at 24o 



Defects 
•  Simulation of CMB distorted by cosmic strings: 

         temperature:                              spherical gradient: 
 
 
 
 
 
 
 
 
 
Search through power spectrum distortions and specific types of non-gaussianity: no 
evidence (Gµ/c2 < 10-7) 
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Planck Collaboration: Cosmic strings and other topological defects

-100.0  100.0 

�T/T/(Gµ/c2)

Fig. 6. All sky Mollweide projection of the simulated cosmic strings CMB sky after convolution by a Gaussian beam of 5⇥ resolution.
The color scale indicates the range of �T/T/(Gµ/c2) fluctuations.

 

Fig. 7. A 20� gnomic projection patch extracted from the full sky map and zooming into string induced temperature steps (see
Fig. 6). Applying the spherical gradient magnitude operator enhances the temperature steps, and thus the string locations, even
more (right).

tions typically require 800 000 cpu-hours, so we have chosen
to generate three new maps at a lower resolution of 1.7⇥, i.e.,
Nside = 2048. Unfortunately, at this lower resolution, the sim-
ulated string maps, hereafter referred to as raw maps, exhibit
a strong aliasing at small scales that could have induced spuri-
ous systematics even after convolution with the Planck beam.

This aliasing concerns pixel-sized structures and comes from
the method used to numerically evaluate Eq. (11). In order to
spare computing time, the signal associated with each pixel is
only computed at the centroid direction n̂. This has the e⇥ect of
including some extra power associated with string small-scale
structure that is below the pixel angular size, thereby aliasing

8



Primordial non-gaussianity 
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Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 6. Full 3D CMB bispectrum recovered from the Planck foreground-cleaned maps, including SMICA (left), NILC (centre) and
SEVEM (right), using the hybrid Fourier mode coe⇥cients illustrated in Fig. 8, These are plotted in three-dimensions with multipole
coordinates {⇤1, ⇤2, ⇤3} on the tetrahedral domain shown in Fig. 1 out to ⇤max = 2000. Several density contours are plotted with red
positive and blue negative. The bispectra extracted from the di�erent foreground-separated maps appear to be almost indistinguish-
able.

Fig. 7. Planck CMB bispectrum detail in the signal-dominated regime showing a comparison between full 3D reconstruction using
hybrid Fourier modes (left) and hybrid polynomials (right). Note the consistency of the main bispectrum properties which include
an apparently ‘oscillatory’ central feature for low-⇤ together with a flattened signal beyond to ⇤ � 1400. Note also the periodic CMB
ISW-lensing signal in the squeezed limit along the edges of the tetrapyd.

These amplitudes show remarkable consistency between the dif-
ferent maps, demonstrating that the alternative foreground sepa-
ration techniques do not appear to be introducing spurious NG.
Note that here the �R

n coe⇥cients are for the orthonormalized
modes Rn (Eq. (63)) and they have a roughly constant variance,
so anomalously large modes can be easily identified. It is ev-
ident, for example, that among the low modes there are large
signals, which include the ISW-lensing signal and point source
contributions.

Using the modal expansion of Eq. (45) with Eq. (63), we
have reconstructed the full 3D Planck bispectrum. This is illus-
trated in Fig. 6, where we show “tetrapyd” comparisons between
di�erent foreground cleaned maps. The tetrapyd (see Fig. 1) is
the region defined by the multipoles that obey the triangle condi-
tion, with ⇤ � ⇤max. The 3D plots show the reduced bispectrum of
the map, divided by a Sachs-Wolfe CMB bispectrum solution for

a constant primordial shape, S (k1, k2, k3) = 1. This constant pri-
mordial bispectrum template normalizaton is carried out in order
to remove an ⇥ ⇤4 scaling from the starting bispectrum (it is anal-
ogous to multiplication of the power spectrum by ⇤(⇤ + 1)). To
facilitate the interpretation of 3D bispectrum figures, note that
squeezed configurations lie on the edges of the tetrapyd, flat-
tened on the faces and equilateral in the interior, with b⇤⇤⇤ on the
diagonal. The colour levels are equally spaced with red denot-
ing positive values, and blue denoting negative. Given the cor-
respondence of the �R

n coe⇥cients for SMICA, NILC, and SEVEM,
the reconstructed 3D signals also appear remarkably consistent,
showing similar contours out to ⇤ � 1500. At large multipoles ⇤
approaching ⇤max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution.
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•  Amplitude of specific bispectrum shapes:     (WMAP9)  
•  fNL

local = 2.7 ± 5.8    (68%CL)                         37 ± 20 
•  fNL

equi  = - 42 ± 75    (68%CL)                        51 ± 136 
•  fNL

ortho = - 25 ± 39    (68%CL)                     -245 ± 100 
•  For trispectrum:  

•  τNL
local <  2500 (95%CL) 

•  Compatible with very small NG level predicted by 
canonical single-field inflationary models 

 
 

Temperature bispectrum  
(after foreground cleaning) 



Other investigated extensions 

•  Light sterile neutrino (thermal or non-thermal, m < 10 eV)  
•  DM annihilation (smooth background) 

•  Running of the primordial spectral index 
•  Features in the primodial spectrum 

•  Binning method 
•  Parametric search 

•  Primordial magnetic fields (neglect Faraday; non-helical case; vectors and 
scalars) 

•  Isocurvature modes 
•  General correlated CDM, neutrino density/velocity 
•  Axion-like (CDM, uncorrelated) 
•  Curvaton-like (CDM, maximally correlated) 
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CMB Dipole 
•  Newtonian gravity: motion of observer gives 

dipole from Doppler effect 

•  GR: Doppler boost affects all multipoles at 
10-5 level. Aberration (similar to coherent 
lensing) and modulation. 

•  First detection based on tripsectrum: 
 

 v = 384 km.s−1 ± 78 km.s−1 (stat)  
                                ± 115 km.s−1(sys) 

•  Compatible with observed dipole: 369 km.s−1 

•  No evidence for anomalous primordial dipole 
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Planck Collaboration: Doppler boosting of the CMB: Eppur si muove

The e�ect on the CMB fluctuations is to increase the amplitude
of the power spectrum by approximately 0.25% in the velocity
direction, and decrease it correspondingly in the anti-direction.
Second, there is an “aberration” e�ect, in which the apparent ar-
rival direction of CMB photons is pushed toward the velocity
direction. This e�ect is small, but non-negligible. The expected
velocity induces a peak deflection of � = 4.2⇧ and a root-mean-
squared (rms) deflection over the sky of 3⇧, comparable to the
e�ects of gravitational lensing by large-scale structure, which
are discussed in Planck Collaboration XVII (2013). The aber-
ration e�ect squashes the anisotropy pattern on one side of the
sky and stretches it on the other, e�ectively changing the angu-
lar scale. Close to the velocity direction we expect that the power
spectrum of the temperature anisotropies, C⇧, will be shifted so
that, e.g., ⇧= 1000⌅ ⇧= 1001, while ⇧= 1000⌅ ⇧= 999 in the
anti-direction. In Fig. 1 we plot an exaggerated illustration of the
aberration and modulation e�ects. For completeness we should
point out that there is a third e�ect, a quadrupole of amplitude
�2 induced by the dipole (see Kamionkowski & Knox 2003).
However, extracting this signal would require extreme levels of
precision for foreground modelling at the quadrupole scale, and
we do not discuss it further.

In this paper, we will present a measurement of �, exploiting
the distinctive statistical signatures of the aberration and mod-
ulation e�ects on the high-⇧ CMB temperature anisotropies. In
addition to our interest in making an independent measurement
of the velocity signature, the e�ects which velocity generates on
the CMB fluctuations provide a source of potential bias or con-
fusion for several aspects of the Planck data. In particular, ve-
locity e�ects couple to measurements of: primordial “⇤NL”-type
non-Gaussianity, as discussed in Planck Collaboration XXIV
(2013); statistical anisotropy of the primordial CMB fluctua-
tions, as discussed in Planck Collaboration XXIII (2013); and
gravitational lensing, as discussed in Planck Collaboration XVII
(2013). There are also aspects of the Planck analysis for which
velocity e�ects are believed to be negligible, but only if they are
present at the expected level. One example is measurement of
fNL-type non-Gaussianity, as discussed in Catena et al. (2013).
Another example is power spectrum estimation; as discussed
above, velocity e�ects change the angular scale of the acous-
tic peaks in the CMB power spectrum. Averaged over the full
sky this e�ect is strongly suppressed, as the expansion and con-
traction of scales on opposing hemispheres cancel out. However
the application of a sky mask breaks this cancellation to some
extent, and can potentially be important for parameter estima-
tion (Pereira et al. 2010; Catena & Notari 2012). For the 143
and 217 GHz analysis mask used in the fiducial Planck CMB
likelihood (Planck Collaboration XV 2013), the average lensing
convergence field associated with the aberration e�ect (on the
portion of the sky which is unmasked) has a value which is 13%
of its peak value, corresponding to an expected average lensing
convergence of �⇥ 0.13 = 1.5⇥ 10�4. This will shift the angular
scale of the acoustic peaks by the same fraction, which is de-
generate with a change in the angular size of the sound horizon
at last scattering, ⇥⇤ (Burles & Rappaport 2006). A 1.5 ⇥ 10�4

shift in ⇥⇤ is just under 25% of the Planck uncertainty on this pa-
rameter, as reported in Planck Collaboration XVI (2013)—small
enough to be neglected, though not dramatically so. Therefore it
does motivate us to test that the observed aberration signal is not
significantly larger than expected. With such a confirmation in
hand, a logical next step is to correct for these e�ects by a pro-
cess of de-boosting the observed temperature Notari & Quartin
(2012); Yoho et al. (2012).

(a) T primordial

(b) Taberration

(c) Tmodulation

Fig. 1. Exaggerated illustration of the Doppler aberration and
modulation e�ects, in orthographic projection, for a velocity
v = 260 000 km s�1 = 0.85c (approximately 700 times larger
than the expected magnitude) toward the northern pole (indi-
cated by meridians in the upper half of each image on the left).
The aberration component of the e�ect shifts the apparent posi-
tion of fluctuations toward the velocity direction, while the mod-
ulation component enhances the fluctuations in the velocity di-
rection and suppresses them in the anti-velocity direction.

Before proceeding to discuss the aberration and modulation
e�ects in more detail, we note that in addition to the overall pe-
culiar velocity of our Solar System with respect to the CMB,
there is an additional time-dependent velocity e�ect from the or-
bit of Planck (at L2, along with the Earth) about the Sun. This
velocity has an average amplitude of approximately 30 km s�1,
less than one-tenth the size of the primary velocity e�ect. The
aberration component of the orbital velocity (more commonly
referred to in astronomy as “stellar aberration”) has a maximum
amplitude of 21⇧⇧ and is corrected for in the satellite pointing.
The modulation e�ect for the orbital velocity switches signs be-
tween each 6-month survey, and so is suppressed when using
multiple surveys to make maps (as we do here, with the nominal
Planck maps, based on a little more than two surveys), and so
we will not consider it further here.

2. Aberration and modulation

Here we will present a more quantitative description of the aber-
ration and modulation e�ects described above. To begin, note
that, by construction, the peculiar velocity, �, measures the ve-

2



Large-scale anomalies 
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•  Confirmation of lack of power on large scales (25<l<35) 
•  Less variance in northern ecliptic hemisphere 
      (0.1% chance) up to l~1500 
•  [ Even multipoles supressed till l~25 ] 
•  Cold spot (0.3% chance) 

•  Low quadrupole 
•  Quadrupole-octopole alignement (9° to 13°, not 3°)  

Galactic foregrounds? Solar emission? Local universe?  
Primordial fluctuations? Topology? Magnetic fields? 

Planck Collaboration: Isotropy and statistics

Fig. 23. The 2-point (upper left), pseudo-collapsed (upper right), equilateral 3-point (lower left) and rhombic 4-point (lower right)
correlation functions (Nside = 64). Correlation functions are shown for the analysis performed on northern (blue) and southern
(red) hemispheres determined in the Ecliptic coordinate frame. The shaded dark and light grey bands indicate the 68% and 95%
confidence regions, respectively.

as represented by the WMAP data (Räth et al. 2007a, 2009;
Rossmanith et al. 2009a; Räth et al. 2011).

In general, the method is a mapping that calculates, for each
member pi, i = 1, . . . ,Npix of a point set P, a single value that de-
pends on the spatial position of pi relative to the group of other
points in its neighborhood, in which the point under consider-
ation is embedded. A three-dimensional point set P is gener-
ated for two-dimensional spherical CMB-data by transforming
the temperature values T (⇥i, ⇧i) of each pixel to a radial jitter
around a sphere of radius R at the position of the pixel centre
(⇥i, ⇧i). For obtaining scaling indices the local weighted cumula-
tive point distribution which is defined as

⇤(pi, r) =
Npix⌅

j=1

sr(d(pi, pj)) (34)

with r describing the scaling range, while sr and d denote a shap-
ing function and a distance measure, respectively, is calculated
first. The scaling index �(pi, r) is then defined as the logarithmic
derivative of ⇤(pi, r) with respect to r:

�(pi, r) =
� log ⇤(pi, r)
� log r

. (35)

Using a quadratic gaussian shaping function sr(x) = e�( x
r )2 and

an isotropic euclidian norm d(pi, pj) = ⇧pi� pj⇧ as distance mea-
sure, one obtains the following analytic formula for the scaling
indices

�(pi, r) =

⇤Nrmpix

j=1 2
� di j

r

⇥
e�
�

di j
r

⇥2

⇤Nrmpix

j=1 e�
�

di j
r

⇥2 , (36)

where we use the abbreviation di j ⇥ d(pi, pj). As should be
clear from equation (36), the calculation of scaling indices de-
pends on the scale parameter r. Ten scaling range parameters
rk = 0.05, 0.1, . . . , 0.5, k = 1, 2, . . . 10 in the notation of Räth
et al. (2007a) are used in this analysis. In order to calculate scal-
ing indices on large scales as in previous studies, we couple the
r-jitter a to rk via a = 0.5rk. The mean ⇤�(rk)⌅ and the standard
deviation ⌅�(rk) derived from the full sky and from a set of 768
rotated hemispheres are used to test for non-Gaussianity and de-
viations from statistical isotropy.

In order to quantify the significance of the scaling index
results, and focus the study on the phase properties of the ob-
served CMB sky, we utilize the method of surrogate maps (Räth
et al. 2009). Such a technique o�ers the unique possibility to
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2-point correlation function 
 in real (angular) space 



3-5.02.2014 Cosmology in Planck era – J. Lesgourgues 61 

•  More details on the theory in: 
•  ``TASI lectures on Cosmological Perturbations’’, JL, arXiv:1302.4640 

•  More details on observational constraints in the 1st Planck release papers, in 
particular: 
•  Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 
•  Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 
•  Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083  
•  Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, arXiv:1303.5084 
•  Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, 

arXiv:1303.5085 
•  Planck 2013 results. XXVI. Background geometry and topology of the Universe, arXiv:

1303.5086 


