

Cosmology in Planck era

String Winter School, CERN, 03-05.02.2014 J. Lesgourgues (EPFL, CERN, LAPTh)

CMB physics and Planck results

- 1. The standard cosmological model
 - 1.1. Background
 - 1.2. Thermodynamics
 - 1.3. Perturbations

Bibliography: TASI lectures on Cosmological Perturbations, JL, arXiv:1302.4640

- 2. Basic Planck results and implications for standard model
- 3. Inflation
- 4. Beyond the standard model

1. Standard cosmological model

1.2. Background

• FLRW metric: homogeneous but not static

$$ds^2 = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - Kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\varphi^2 \right) \right]$$

- Origin irrelevant, normalisation of *a* irrelevant
- 2 physical quantitites:

$$R_c = \frac{a}{\sqrt{K}}$$
 $H = \frac{\dot{a}}{a}, \quad R_H = \frac{c}{H}$

$$G_{\mu\nu} = 8\pi G \ T_{\mu\nu}$$

• Friedmann

$$3\left[\frac{1}{R_c^2} + \frac{1}{R_H^2}\right] = 8\pi G \ \rho$$
$$3H^2 = 8\pi G \ \rho - \frac{3K}{a^2}$$

Conservation of energy

$$\dot{\rho} = -3\frac{\dot{a}}{a}(\rho + p)$$

• Distances depend on expansion; e.g. d_A:

• Euclidian:
$$\lambda = d_A heta$$

• FLRW:
$$d_a = \frac{\lambda}{\theta} = a(t_e) \int_{t_e}^{t_0} \frac{dt}{a(t)}$$

• Time labelled by:

$$a, \quad t, \quad \tau \quad \left(d\tau = \frac{dt}{a} = \pm dr\right), \quad z = \frac{a_0}{a} - 1$$

1.2. Thermodynamics:

• After BBN: baryonic matter = H^+ , He^{++} (25% of mass)

- Neutral atoms cannot form (photo-dissociation)
- Then $He^{++} + e^{-} \rightarrow He^{+}$ $He^{+} + e^{-} \rightarrow He$ $H^{+} + e^{-} \rightarrow H$ z~1080 (recombination)
- Reionisation at z~10 (star formation)

- High energy: g ← Thomson → e⁻ ← Coulomb → b
 Tightly coupled fluid
- Γ < H when n_e drops during recombination: decoupling = recombination (CMB emission)
- Γ < H even after reionisation (dilution of free electrons): only 7% of CMB photons re-scatter

1.3. Linear perturbations

- Comoving Fourier wavelength $\frac{2\pi}{k}$, physical $\frac{2\pi a(t)}{k}$
- Radius of universe ~ $O(R_H)$: all observables modes sub-Hubble
- Decelerated expansion, modes cross from outside to inside Hubble radius:

$$\frac{\lambda}{R_H} = \frac{2\pi a}{k} \frac{\dot{a}}{a} = \frac{2\pi}{k} \dot{a}$$

• Modes all outside Hubble radius in the past

- Metric expansion: $g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$
- Gauge freedom (time slicing), Newtonian gauge:

$$ds^{2} = -(1+2\psi)dt^{2} + (1-2\phi)a^{2}(t)\left[\frac{dr^{2}}{1-Kr^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

- Matter perturbations: $T_{\mu\nu} = \bar{T}_{\mu\nu} + \delta T_{\mu\nu}$
- Scalar/vector/tensors under spatial rotations
- Einstein + Boltzmann for each species (b, cdm, γ , ν , ...)

$$D_{ au}f(t,ec{x},ec{p})=0$$
 or interaction term

• tightly coupled baryon-photon fluid with

$$\Theta = \frac{\delta T}{T}$$

$$\begin{split} \Theta^{\prime\prime} &+ \frac{R^{\prime}}{1+R} \Theta^{\prime} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \psi + \frac{R^{\prime}}{1+R} \phi^{\prime} + \phi^{\prime\prime} \\ &\text{Baryon} &\text{Pressure} &\text{Newtonian} &\text{Dilation} \\ &\text{damping} & (\text{acoust. waves}) &\text{force} &\text{effect} \\ &R = \frac{4\rho_b}{3\rho_\gamma} &c_s^2 = \frac{\delta p_\gamma + \delta p_b}{\delta \rho_\gamma + \delta \rho_b} = \frac{1}{3(1+R)} \end{split}$$

• Acoustic oscillations because system places initially out of equilibrium:

Super-H: $\delta_{\gamma} = -2\phi$ Equilibrium: $\langle \delta_{\gamma} \rangle = -(1+R)\phi$

• in summary:

- CMB spectrum in Sachs-Wolfe approximation:
 - assume instantaneous decoupling, then free-streaming without interactions

• then
$$\frac{\delta T}{T}$$
 conserved along each line-of-sight
• Sachs-Wolfe : $\frac{\delta T}{T}\Big|_{obs} = \frac{\delta T}{T}\Big|_{dec} + \psi$
• Relation between $\left\langle \left|\frac{\delta T}{T}(t_{dec})\right|^2 \right\rangle$ versus k
 $\left\langle \left|\frac{\delta T}{T}(t_0)\right|^2 \right\rangle$ versus I, also called C₁

(using $\lambda = d_A \theta$)

- Correction from Doppler
- Correction from diffusion damping (Silk damping)
- Correction from reionisation
- Correction from gravitational effects along line-of-sight (Integrated Sachs-Wolfe effect)

... hence lots of intricated effects... but they are not degenerate at list in the standard cosmological model with 6 parameters:

$$\{\omega_b, \omega_{cdm}, h, A_s, n_s, z_{reio}\}$$

Effect of increasing ω_{b}

Effect of increasing ω_{m}

18

Effect of increasing Ω_{Λ}

Effect of increasing A_s

20

Effect of increasing n_s

Effect of increasing τ_{reio}

2. Planck basic results

2.1. observation of temperature anisotropies

- Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month.
- 75 detectors cover 9 frequency channels

2. Planck basic results

2.1. Observation of temperature anisotropies

- Launched by ESA and placed in L2 orbit in 2009. Full scan every 6 month.
- 75 detectors cover 9 frequency channels

The Cosmic Microwave Background as seen by Planck and WMAP

• Expansion of temperature map in spherical harmonic:

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{lm} a_{lm} Y_{lm}(\theta,\phi)$$

• Temperature spectrum in multipole space:

$$C_l^{th} = \langle a_{lm} a_{lm}^* \rangle$$
$$C_l^{obs} = \sum_{m=-l}^l \frac{a_{lm}^2}{2l+1}$$

2.2. Implications for ΛCDM

	Planck	
Parameter	Best fit	68% limits
$\overline{\Omega_{ m b}h^2\ldots\ldots\ldots}$	0.022068	0.02207 ± 0.00033
$\Omega_{ m c}h^2$	0.12029	0.1196 ± 0.0031
$100\theta_{\rm MC}$	1.04122	1.04132 ± 0.00068
au	0.0925	0.097 ± 0.038
$n_{\rm s}$	0.9624	0.9616 ± 0.0094
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072
$\overline{\Omega_{\Lambda}$	0.6825	0.686 ± 0.020
$\Omega_{\rm m}$	0.3175	0.314 ± 0.020
σ_8	0.8344	0.834 ± 0.027
$z_{\rm re}$	11.35	$11.4^{+4.0}_{-2.8}$
H_0	67.11	67.4 ± 1.4

Mesure directly
$$\theta_* = \frac{\pi}{l} = \frac{d_s(t_{dec})}{d_A(t_{dec})} = \frac{\int_{t_i}^{t_{dec}} c_s \frac{dt}{a}}{\int_{t_{dec}}^{t_0} \frac{dt}{a}}$$
 and indirectly Ω_{Λ} , H_0

Cosmology in Planck era – J. Lesgourgues

SNIa

Galaxy correlation function

Preliminary polarisation spectrum

- exaggerated effect of a huge cluster:
- In fact, only 2'-3' deflections, coherent over large scales: invisible by eye
- Lensing potential = projected gravitational field (with some kernel: sensitive to structures at z~1-3)
- Induces non-gaussianity with very specific correlations. Can be extracted with specific "quadratic estimator" (= 4point correlations)
- Proposed by Hu & Okamoto (2001) First success in 2012 (SPT-ACT)

Lensing potential map:

Low signal-to-noise, but correlates at high level with different tracers of LSS (20 sigma with NVSS quasars, 10 sigma with SDSS LRG, 42 sigma with Planck's CIB)

- Lensing power spectrum consistent with ΛCDM
- Helps removing degeneracies and measuring extended model parameters with Planck alone

3. Inflation

- 3.1. Causality
- 3.2. Flatness
- 3.3. Slow-roll
- 3.4. Generation of perturbations
- 3.5. Summary of predictions of simple inflationary model
- nearly flat universe
- super-Hubble correlations + coherent oscillations
- Gaussian statistics
- adiabatic initial conditions
- nearly scale-invariant primordial spectrum
- gravitational wave background

3.5. Planck constraints on inflationary phase space

Tensors, spectral index and inflation

• Also OK: Hill-top with p=2 or $p\geq4$; also disfavored: inverse power-law

Inflation potential reconstruction

"observable window" of the inflaton potential, assuming that it can be Taylor-expanded inside this region at order n = 2, 3, 4 (units of true m_P)

4. Beyond minimal ΛCDM

Relativistic d.o.f. (N_{eff})

$$\rho_{\rm R} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

- CMB alone (Planck+WP+HighL) $N_{eff} = 3.36 \pm 0.66$ (95%CL)
- With lensing and BAO:

 $N_{eff} = 3.30 \pm 0.52$ (95%CL)

• With H_0 and BAO:

 $N_{eff} = 3.53 \pm 0.46$ (95%CL) $\Delta \chi^2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4$

Relativistic d.o.f. (N_{eff})

- CMB alone (Planck+WP+HighL) $N_{eff} = 3.36 \pm 0.66$ (95%CL)
- With lensing and BAO: $N_{eff} = 3.30 \pm 0.52$ (95%CL)
- With H_0 and BAO:

 $N_{eff} = 3.53 \pm 0.46$ (95%CL) $\Delta \chi^2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4$

Curvature

Dark Energy

- $\rho \sim m_P^4 \sim (10^{28} \text{eV})^4$ or m_{susy}^4 or $m_{EW}^4 \sim (10^{11} \text{eV})^4$ from radiative corrections to vacuum energy
- $\Delta \rho \sim m_{EW}^{4} \sim (10^{11} \text{eV})^{4}$ or $m_{QCD}^{4} \sim (10^{8} \text{eV})^{4}$ variations of vacuum energy during phase transitions

Dark Energy

• constant w:

Dark Energy

• varying w(a) (linear):

Neutrino mass

- Neutrino oscillation experiments: $\Sigma m_v > 0.06 \text{ eV}$
- CMB alone (Planck+WP+HighL): $\Sigma m_v < 0.66 eV (95\% CL)$
- With BAO:
 - $\Sigma m_v < 0.23 eV$ (95%CL)
- With lensing:

 $\Sigma m_v < 0.85 eV$ (95%CL)

Variations of fine-structure constant

All experiments (atomic clocks, geological radioactivity, BBN, etc.) consistent with no variations, excepted quasar absorption lines (Webb et al. 2001, Murphy et al. 2003)

Topology

- Search for matching circles
- Search for specific patterns for flat spaces with cubic toroidal (T3), equal-sided chimney (T2) and slab (T1) topologies, three multi-connected spaces of constant positive curvature (dodecahedral, truncated cube and octahedral) and two compact negative-curvature spaces
- Search for Bianchi VII_h cosmology

simulated maps with matching circles at 24°

Defects

spherical gradient:

• Simulation of CMB distorted by cosmic strings:

temperature:

Search through power spectrum distortions and specific types of non-gaussianity: no evidence (Gµ/c² < 10⁻⁷)

Primordial non-gaussianity

Temperature bispectrum (after foreground cleaning)

- Amplitude of specific bispectrum shapes: (WMAP9)
 - $f_{NL}^{local} = 2.7 \pm 5.8$ (68%CL) 37 ± 20
 - $f_{NL}^{equi} = -42 \pm 75$ (68%CL) 51 ± 136
 - $f_{NL}^{ortho} = -25 \pm 39$ (68%CL) -245 ± 100
- For trispectrum:
 - $\tau_{\rm NL}^{\rm local} < 2500 (95\% CL)$
- Compatible with very small NG level predicted by canonical single-field inflationary models

Other investigated extensions

- Light sterile neutrino (thermal or non-thermal, m < 10 eV)
- DM annihilation (smooth background)
- Running of the primordial spectral index
- Features in the primodial spectrum
 - Binning method
 - Parametric search
- Primordial magnetic fields (neglect Faraday; non-helical case; vectors and scalars)
- Isocurvature modes
 - General correlated CDM, neutrino density/velocity
 - Axion-like (CDM, uncorrelated)
 - Curvaton-like (CDM, maximally correlated)

CMB Dipole

- Newtonian gravity: motion of observer gives dipole from Doppler effect
- GR: Doppler *boost* affects all multipoles at 10⁻⁵ level. Aberration (similar to coherent lensing) and modulation.
- First detection based on tripsectrum:

v = 384 km.s⁻¹ \pm 78 km.s⁻¹ (stat) \pm 115 km.s⁻¹(sys)

- Compatible with observed dipole: 369 km.s⁻¹
- No evidence for anomalous primordial dipole

Large-scale anomalies

Galactic foregrounds? Solar emission? Local universe? Primordial fluctuations? Topology? Magnetic fields?

- More details on the theory in:
 - ``TASI lectures on Cosmological Perturbations", JL, arXiv:1302.4640
- More details on observational constraints in the 1st Planck release papers, in particular:
 - Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076
 - Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082
 - Planck 2013 results. XXIII. Isotropy and statistics of the CMB, arXiv:1303.5083
 - Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, arXiv:1303.5084
 - Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, arXiv:1303.5085
 - Planck 2013 results. XXVI. Background geometry and topology of the Universe, arXiv: 1303.5086