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Why Susy in curved space

Allows to compute exactly many interesting observables such as:

Partition function Z on a compact manifold M.

Expectation value of supersymmetric operators.



Why Susy in curved space

Allows to compute exactly many interesting observables such as:

Partition function Z on a compact manifold M.
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For instance:

The partition function on S3 × S1 of N = 1 theories with a
U(1)R symmetry. [Romelsberger; Dolan Osborn . . . ]

The partition function on S4 of N = 2 theories. [Pestun;. . . ]

The partition function on S3 of N = 2 theories with a U(1)R
symmetry.[Kapustin, Willett, Yaakov;. . . ]
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N = 1, 2, 4 on S3
b × R N = 2 on S3
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These results can be extended to less symmetric manifolds:

N = 1, 2, 4 on S3
b × R N = 2 on S3

b

[Hama, Hosomichi, Lee; Imamura]

N = 2 on S4
b [Hama, Hosomichi]

Different squashings of S3 have been considered

Some preserve an SU(2) × U(1) isometry others just
U(1) × U(1)

The metric can depend on arbitrary functions or on a finite
number of parameters

The partition function on all these backgrounds is a certain
function of a single complex parameter b.
[Alday Martelli Richmond Sparks]



Questions

Which manifolds M allow for Susy?

What is the structure of supersymmetric theories on M ?

Dependence of susy observables on the geometry of M.



Outline

A general framework to understand Susy on curved manifolds.

Classification of Susy backgrounds. Survey of results in different
number of dimensions.

Dependence of partition functions on geometry



Susy on Curved Manifolds

Consider a supersymmetric theory in flat space.

We want to place it on a manifold (M, g) so that:

The short distance limit of the theory is unaffected.

The theory is invariant under some Supersymmetry.

At short distances the Susy transformations are part of the flat
space superalgebra.



The Rigid Limit of SUGRA

Consider an off-shell formulation of Supergravity and give arbitrary
background values to the fields in the gravity multiplet:

The metric gµν

Various auxiliary fields.

Set the gravitino ψµα = 0

Send Mp → ∞ keeping the background values for the metric and
auxiliary fields fixed.

Some supersymmetry is preserved if it is possible to find ζα such
that the SUSY variation of the gravitino is zero:

δζψµα = 0 ⇒ ∇µζα = M β
µα ζβ

where Mµ depends on the the metric and auxiliary fields.



The Rigid Limit of SUGRA: Comments

Different backgrounds treated in a unified way.

Different than Linearized Sugra.

∇µζα = M β
µα ζβ

The ”Killing” equation for ζ depends only on the fields in the
gravity multiplet

⇓
Weak dependence on the matter content.

Generalized treatment of different theories.

We do not impose e.o.m. for the auxiliary fields. Different off
shell formulations of SUGRA can lead to distinct deformations.



Example: New Minimal Sugra

In a N = 1 theory with a U(1)R symmetry consider

The energy momentum tensor Tµν

The conserved R-current jRµ

The supercurrent Sµα

Together with a string current Cµν = ǫµνρσ∂
ρAσ they form the

R-multiplet. It couples to the fields in New Minimal Sugra:

The metric gµν

The gravitino ψµ
α

An auxiliary U(1)R connection Aµ ∼ Aµ + ∂µa

An auxiliary vector V µ. It is conserved ∇µV µ = 0

In the Rigid Limit we set ψµ
α = 0 and freeze the metric and

auxiliary fields to arbitrary background values.



New Minimal Sugra, the Rigid Limit

Consider a flat space N = 1 theory with an U(1)R symmetry.
Coupling to Sugra and taking the rigid limit we obtain:

L = L0 + L1 + L2

L0 is the flat space theory minimally coupled to the metric.

L1 are terms of order 1
r

which couple the auxiliary fields to
definite components of the R-multiplet

L1 = −j(R)
µ (Aµ) −AµV µ.

At this order the deformation of the flat space theory can be
described also when a Lagrangian is not available.

L2 are 1
r2 terms with curvature or two auxiliary fields.

q

(

1

4
R +

3

2
VµV µ + 2VµAµ

)

(φφ̄)



Rigid Variations

The Susy transformation are deformed from their flat space
counterparts. E.g. for a chiral multiplet of R-charge q:

δφi = −
√

2ζψi

δψi
α = −

√
2ζαF i − i

√
2(σµζ̄)α(∂µ − iq(Aµ +

3

2
Vµ))φi

δF i = −i
√

2ζ̄ σ̄µ

(

∇µ − i(q − 1)(Aµ +
3

2
Vµ) − i

2
Vµ

)

ψi

Setting to zero the gravitino variation gives the Killing spinor
equations:

(∇µ − iAµ)ζ = − i

2
V νσµσ̄νζ , (∇µ + iAµ)ζ̄ =

i

2
V ν σ̄µσν ζ̄

On an Euclidean manifold M the spinors ζ and ζ̄ are independent
and Vµ,Aµ are complex.



Example: S
3 × S

1 [D. Sen; Romelsberger]

Consider the (Euclidean) cylinder S3 × R

The isometry group is SU(2)ℓ × SU(2)r × R

V = −2A = − i

r
dτ

The spinors ζ and ζ̄ are τ independent.

The spinors ζ and ζ̄ are in (1
2 , 0).

No need for superconformal symmetry.

The resulting superalgebra is SU(2|1)ℓ × SU(2)r × R

Because the spinors are τ independent we can compactify R to S1.

If additional U(1)f flavor symmetries are present we can add
complex background gauge fields Af = − i

r
µf dτ along S1.



The partition Function on S
3 × S

1

If additional U(1)f flavor symmetries are present we can add
complex background gauge fields Af = − i

r
µf dτ along S1.

Trace over the Hilbert space. The µf are complex chemical
potentials for the U(1)f .

Z = Tr(−1)F exp

(

−βH − β

r

∑

f

µf Qf

)

Gets contributions only from short representations of SU(2|1)l .

{Qα, Q̄β} = 2δαβ

(

H + R/r
)

+ ...

The U(1) in SU(2|1) is H + R/r . The states that contribute to the
trace have H = 1

r
(2J3

l − R).



The partition Function on S
3 × S

1

The values of H are quantized. Z is independent of small
deformations of the lagrangian. It is the same in the UV and IR.

Free field computations in the UV are possible [Romelsberger].

Used to test dual descriptions in the IR. [Romelsberger;
Dolan, Osborn; Spiridonov,Vartanov;...]

For superconformal theories it reduces to the superconformal
index [Kinney, Maldacena, Minwalla, Raju]

The dependence on µf is holomorphic



Classification of SUSY geometries



Classifying Supersymmetric Manifolds

Consider the 4d New Minimal Sugra Killing spinor equation.
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for some choice of background fields Aµ and Vµ?
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Classifying Supersymmetric Manifolds

Consider the 4d New Minimal Sugra Killing spinor equation.

On which Riemannian Manifolds (M, g) are there solutions of

(∇µ − iAµ)ζ = − i

2
V νσµσ̄νζ , (∇µ + iAµ)ζ̄ =

i

2
V ν σ̄µσν ζ̄

for some choice of background fields Aµ and Vµ?

One Killing spinor ζ exists if and only if M is complex.

Two Killing spinors of opposite R-charge ζ and ζ̄ are present
only on torus fibrations over a Riemann surface Σ.

Two Killing spinors of the same R-charge require SU(2)
holonomy (compact case) or one of the cases below.

Four supercharges are only present on R4 or S3 ×R or H3 ×R

(and some of their compactifications)



One supercharge in 4d with U(1)R

(∇µ − iAµ)ζ = − i

2
V νσµσ̄νζ

A solution ζ is everywhere nonzero hence we can form the tensor

Jµ
ν =

2i

|ζ|2 ζ
†σµ

νζ

Jµ
ν is an almost complex structure Jµ

νJ
ν
ρ = −δµ

ρ

Jµ
ν is metric compatible. gρλJρ

µJλ
ν = gµν

Jµ
ν is integrable because ζ is Killing.

The triple (M, gµν , Jµ
ν) defines an Hermitian manifold.



One supercharge in 4d with U(1)R

(∇µ − iAµ)ζ = − i

2
V νσµσ̄νζ

A solution ζ is everywhere nonzero hence we can form the tensor

Jµ
ν =

2i

|ζ|2 ζ
†σµ

νζ

Jµ
ν is an almost complex structure Jµ

νJ
ν
ρ = −δµ

ρ

Jµ
ν is metric compatible. gρλJρ

µJλ
ν = gµν

Jµ
ν is integrable because ζ is Killing.

The triple (M, gµν , Jµ
ν) defines an Hermitian manifold.

Conversely on any Hermitian manifold ∃ a solution ζ such that

Jµ
ν =

2i

|ζ|2 ζ
†σµ

νζ

[Klare, Tomasiello, Zaffaroni; Dumitrescu, Seiberg, GF]



One supercharge in 4d with U(1)R

In the Kähler case we could set Vµ = 0 and get (∇µ − iAµ)ζ = 0

The holonomy of the Levi-Civita connection is in U(1)l × SU(2)r
we can twist away its U(1)l part using Aµ.



One supercharge in 4d with U(1)R

In the Kähler case we could set Vµ = 0 and get (∇µ − iAµ)ζ = 0

The holonomy of the Levi-Civita connection is in U(1)l × SU(2)r
we can twist away its U(1)l part using Aµ.

In the general case:

The auxiliary vector field Vµ encodes the failure of M to be
Kähler.

Vµ = −1

2
∇νJ

ν
µ + (∗W )µ, Wij j̄ , dW = 0

The Chern connection has holonomy in U(1)l × SU(2)r .
Aµ twists away its U(1)l part.

The Superalgebra generated by ζ is {Qζ ,Qζ} = 0.

Qζ is a scalar under holomorphic complex coordinate changes
followed by appropriate R-transformations.



Background gauge fields

If the flat space theory has some global symmetry (say U(1)) it
possesses a conserved current jµ part of a linear multiplet

(J, jµ, jα, j̄α̇)

We can couple it to a background gauge multiplet

(D, aµ, λα = 0, λ̄α̇ = 0)

This background preserves a supercharge ζ if

f (0,2)
µν = 0, D = −1

2
Jµν fµν

Hence aµ is connection on a holomorphic line bundle



Two Supercharges in 4d

If a second solution ζ̄ is present there are further restrictions on
the metric. Consider the complex vector field

Kµ = ζ̄ σ̄µζ, Re(Kµ) = Xµ, Im(Kµ) = Y µ

Kµ is Killing.

XµXµ = Y µYµ and XµYµ = 0

Jµ
ν is determined by Kµ and the metric.

If [X ,Y ] 6= 0 the manifold is locally isometric to S3 × R

If [X ,Y ] = 0 the two Killing vector fields X and Y generate
translations on a T 2 fibered over a Riemann surface Σ



Two Supercharges 4d/3d

The superalgebra generated by ζ and ζ̄ is

{Qζ ,Qζ} = 0, {Qζ̄ ,Qζ̄} = 0, {Qζ̄ ,Qζ} = δK

[δK ,Qζ ] = [δK ,Qζ̄ ] = 0

By reducing along one direction on the T 2 we obtain the following:

Any N = 2 field theory with a U(1)R symmetry in 3d can be placed
on a circle bundle over Σ preserving two supercharges.

All squashed 3-spheres in the literature are in this class.



Dependence of Observables on

Geometry



Dependence of Observables on

Geometry

Start with analyzing the partition function of N = 1 theories
on compact complex manifolds M4

Here we will consider the limit of large M4. A linearized
analysis around flat space is applicable

Only classical considerations.



Linearized Analysis

Choose a single supercharge Qζ in flat space ⇒ choice of Jµ
ν .

Small variations of the geometry δgµν , δJ
µ

ν and of Wµνρ couple
to the R-multiplet while changes in the background gauge fields
δaµ couple to the corresponding linear multiplet.

δL = −1

2
δgµνTµν + δAµj(R)

µ + δV µAµ − δaµjµ + δDJ .

Some terms in δL are Q-exact and do not contribute to Z .

Qζ is a scalar under complex coordinate changes ⇒ the results
holds also at the nonlinear level.



Deformations of Complex structures

Choose a c.s Jµ
ν on M4 and deform it by adding δJµ

ν .

In complex coordinates adapted to Jµ
ν the requirement that

J + δJ is an almost complex structure implies that at linear level

δJ i
j = δJ ī

j̄ = 0

The remaining components are constrained by the integrability
requirement

∂j̄δJ
i
ī − ∂īδJ

i
j̄ = 0

δJ generated by diffeomorphisms are trivial δJ i
ī ∼ δJ i

ī + 2i∂ī ǫ
i

Hence, at first order, deformations of Jµ
ν are determined by

Θi = δJ i
īdz̄ ī , [Θi ] ∈ H0,1(M4,T

1,0(M4))



Deformations of metric and background gauge fields

Variations of the metric are constrained by the change in complex
structure

δg i j̄ are unconstrained

δgij = i
2

(

gi k̄∆J k̄
j + gj k̄∆J k̄

i

)

In the same way for Abelian background gauge fields we must have

∂īδaj̄ − ∂j̄δaī = 0

modulo gauge transformations δaµ = ∂µǫ. Hence the holomorphic
line bundle moduli are in H0,1(M4).



The deformed Lagrangian

We can express the deformation of the Lagrangian δL in terms of
the variations of δJµ

ν δgµν and δaµ. (We set W = dB̃)

δL = Qζ(I) + δJ i
īO ī

i + δaīJ ī

δgi j̄ appears in Qζ exact terms.
Z (M4) does not depend on the Hermitian metric.

Varying W = dB̃ does not change Z (M4).
Dependence on Wµνρ is at most cohomological.

Invariance under diffeomorphisms and gauge transformations
implies that for δJ i

ī = 2i∂ī ǫ
i and δaī = ∂ī ǫ

δLtrivial = Qζ(I ′) + total der

The partition function depends holomorphically on the moduli
of the complex structure and of the holomorphic line bundle.
Z can however be singular.



Example S
3 × S

1

Display S3 ×S1 as a complex manifold by a quotient of C 2−{(0, 0)}.

(z1, z2) ∼ (pz1, qz2), 0 < |p| ≤ |q| < 1

p, q are complex structure moduli.

We will denote this branch of the moduli space of complex
structures on S3 × S1 by Mp,q

4 .

There exists an Hermitian metric that allows to preserve 2
supercharges for any (p, q).

For p = q∗ we can preserve four supercharges.



Example S
3 × S

1

The partition function on S3 × S1 is the supersymmetric index

I(p, q, u) = TrS3

(

(−1)F pJ3+J′

3−R/2qJ3−J′

3−R/2uQf

)

The fugacities p, q can be identified with the moduli of Mp,q
4

u the fugacity for Qf is an holomorphic line bundle modulus.

The index is meromorphic in p, q and u.

It does not depend on the choice of Hermitian metric.



Conclusions

Placing supersymmetric theories on different manifolds preserving
Susy provides a new set of tools to study the dynamics of strongly
coupled theories.

Turning on background values for the fields in the supergravity
multiplet and taking the rigid limit allows a general description of
rigid SUSY in curved space.



Conclusions

Placing supersymmetric theories on different manifolds preserving
Susy provides a new set of tools to study the dynamics of strongly
coupled theories.

Turning on background values for the fields in the supergravity
multiplet and taking the rigid limit allows a general description of
rigid SUSY in curved space.

The (M, g) allowing for SUSY can be identified independently
from the matter content.

This allows a classification of supersymmetric geometries.

We can study the dependence on the geometry of supersymmetric
observables. We find they are ”almost” topological.



Thank You!


