Implications of a 125 GeV Composite Higgs

Alex Pomarol, UAB (Barcelona)

A Higgs-like state has been discovered

with no significant deviations from a SM Higgs!

What does data tell us?

Light state: $\mathrm{m}_{\mathrm{H}} \approx 125 \mathrm{GeV}$

~ 0.26 (perturbative coupling)
Origin of the EWSB potential \rightarrow a weakly-coupled theory

\checkmark Is this the end of strong dynamics for the EWSB?

Is this the end of strong dynamics for the EWSB?

Not really...

A light scalar can emerge from the strong sector due to symmetries:
I) Supersymmetry
2) Scale invariance: Dilaton
3) Global symmetries: Pseudo-Goldstones

I) Supersymmetry

Two schools with "orthogonal" approaches

Elementary Higgs (SUSY)

Blended Models for EWSB: Combined approach

Strong dynamics at ReV

Elementary Higgs (BUSY)

Why blending?

- MSSM needs a strong sector to break supersymmetry \rightarrow why not at the TeV?
- In the MSSM is difficult to get a Higgs of I25

GeV (needs large susy breaking)
\hookrightarrow extra contributions
if the Higgs is composite

Examples:

Partly supersymmetric models:

Some recent activity using Seiberg dualities

Sparticles: Higgsino and Stops

Signal: $\mathrm{gg} \rightarrow \tilde{\mathrm{t}} \tilde{\mathrm{t}} \rightarrow(\mathrm{t} \tilde{\mathrm{H}})(\mathrm{t} \tilde{\mathrm{H}})$
2) Spontaneously broken scale invariance

2) Dilatations

Not, a priori, guarantees a naturally light dilaton!

Under dilatations: $x \rightarrow \Lambda x$

$$
\text { Dilaton: } \quad \pi \rightarrow \pi(\Lambda x)+\ln \Lambda
$$

$$
\text { or } \varphi=e^{\pi} \rightarrow \Lambda e^{\pi}
$$

A potential is allowed: $\int \mathrm{d}^{4} \mathrm{x} V=\int \mathrm{d}^{4} \mathrm{x} \kappa \varphi^{4} \quad \mathrm{~K}=$ const

$$
\varphi=\text { const } \neq 0 \text { only if } \mathrm{k}=0 \text { (tuning!) }
$$

Explicit breaking must be introduced to the CFT:

Add λO_{d} with $\beta(\lambda) \neq 0$

Now we have: $\quad \mathrm{V}(\varphi)=\kappa(\lambda(\varphi)) \varphi^{4} \quad$ (Coleman-Weinberg potential)
Non-trivial minimum if $\kappa(\lambda(\varphi))$ crosses zero:

Small dilaton mass \rightarrow Flattish potential \rightarrow slow running of $\kappa \rightarrow$ slow running of λ
λ must be an almost marginal deformation of the CFT
$\operatorname{Dim}[\lambda]=\varepsilon \rightarrow m_{\varphi}^{2} \sim \beta(\lambda) \sim \varepsilon \quad($ Not like in QCD)

The AdS/CFT dictionary, tells us how to be realized in AdS spaces (RS-setup):

Rattazzi,Contino,A.P.
$\mathrm{CFT}_{4} \rightarrow \mathrm{AdS}_{5}$
Dilaton \rightarrow Radion
$V(\varphi) \rightarrow T(\varphi)$ tension of the IR-brane
$\mathrm{O}_{\mathrm{d} \sim 4} \rightarrow$ Scalar in the bulk with mass $\sim \varepsilon$
$\lambda \neq 0 \rightarrow$ VEV for the scalar \quad PGB in 5D!! on the AdS boundary
\Leftrightarrow Model of a naturally light dilaton

$$
\mathbf{m}_{\varphi}^{2} \sim \varepsilon
$$

But present data is telling us that the 125 GeV state has to do with EWSB

Falkowski,Riva,Urbano 13
it behaves as a Higgs doublet!

Furthermore no significant deviations from a SM Higgs!

3) Higgs as a PseudoGoldstone boson (PGB)

3) Higgs as a composite PGB:

inspired by QCD where one observes that the (pseudo) scalar are the lightest states

Can the light Higgs be a kind of a pion from a new strong sector?
We'd like the spectrum of the new strong sector to be:

Potential from some new strong dynamics at the TeV:

if global symmetry breaking
e.g. SO(5) \rightarrow SO(4)

4 Goldstones
高
Higgs doublet

Potential from some new strong dynamics at the TeV:

 SM-field couplings to the strong sector
e.g. SO(5) \rightarrow SO(4)

4 Goldstones高 break the global SO(5)

$\cdots+$ Higgs doublet

Potential from some new strong dynamics at the $\mathbf{T e V}$:

Example: Just replace in QCD SU(3)c by SU(2)c

$$
2 \text { flavors: } \quad \psi_{L}, \psi_{R}^{c} \quad 2 \mathrm{~L}+2 \mathrm{R}=4 \text { of } \mathrm{SU}(4)
$$

if $\langle\Psi \Psi\rangle$ breaks $\mathrm{SU}(4) \sim \mathrm{SO}(6) \rightarrow \mathrm{SO}(5)$

$$
\begin{aligned}
& 5 \text { Goldstones }= \text { Higgs doublet } \\
& \text { and a singlet }
\end{aligned}
$$

Higgs Mass

it's a Goldstone

$\Leftrightarrow \quad V(h)=\frac{g_{S M}^{2} m_{\rho}^{2}}{16 \pi^{2}} h^{2}+\cdots$
Difficult to get predictions due to the intractable strong dynamics!

A possibility to move forward has been to use the...

AdS/CFT approach

```
    Strongly-coupled systems
in the Large Nc
Large \(\lambda \equiv g^{2} \mathrm{~N}_{\mathrm{c}}\)
```


Very useful to derive properties of composite states from studying weakly-coupled fields in warped extra-dimensional models

Holographic composite PGB Higgs model

AdS5 throat

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[d x^{2}+d z^{2}\right]
$$

hard/soft wall
 Mass gap $\sim \mathrm{TeV}$

Holo. coordinate z ~ I/E

Holographic composite PGB Higgs model

SO(5) gauge theory
 in a $\mathbf{A d S}_{5}$ throat

$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[d x^{2}+d z^{2}\right]
$$

hard/soft wall
Mass gap $\sim \mathrm{TeV}$

Holo. coordinate z ~ I/E

Holographic composite PGB Higgs model

SO(5) gauge theory

 in a $\mathbf{A d S}_{5}$ throat$$
d s^{2}=\frac{L^{2}}{z^{2}}\left[d x^{2}+d z^{2}\right]
$$

hard/soft

 wallMass gap $\sim \mathrm{TeV}$
Symmetry: SO (4)
Breaking of symmetry
by boundary conditions

Massless Spectrum

Higgs = 5th component of the $\mathrm{SO}(5) / \mathrm{SO}(4)$ gauge bosons
(Gauge-Higgs unification, Hosotani Mechanism,...)
\Rightarrow Normalizable modes = Composite

What about fermions? (Main difficulty in composite models)

The fermionic sector: We have to choose the bulk symmetry representation of the fermions and b.c. giving only the 4D massless spectrum of the SM

Up-quark sector: $\boldsymbol{5}_{2 / 3}$ of $\mathrm{SO}(5) \times \mathrm{U}(1)_{X}$.

$$
\begin{aligned}
& \xi_{q}=\left(\Psi_{q L}, \Psi_{q R}\right)=\left[\begin{array}{l}
(\mathbf{2}, \mathbf{2})_{\mathbf{L}}^{\mathbf{q}}=\left[\begin{array}{l}
q_{L}^{\prime}(-+) \\
q_{L}(++)
\end{array}\right],(\mathbf{2}, \mathbf{2})_{\mathbf{R}}^{\mathbf{q}}=\left[\begin{array}{l}
q_{R}^{\prime}(+-) \\
q_{R}(--)
\end{array}\right] \\
(\mathbf{1}, \mathbf{1})_{\mathbf{L}}^{\mathbf{q}}(--),(\mathbf{1}, \mathbf{1})_{\mathbf{R}}^{\mathbf{q}}(++)
\end{array}\right] \\
& \xi_{u}=\left(\Psi_{u L}, \Psi_{u R}\right)=\left[\begin{array}{ll}
(\mathbf{2}, \mathbf{2})_{\mathbf{L}}^{\mathbf{u}}(+-),(\mathbf{2}, \mathbf{2})_{\mathbf{R}}^{\mathbf{u}}(-+) \\
(\mathbf{1}, \mathbf{1})_{\mathbf{L}}^{\mathbf{u}}(-+),(\mathbf{1}, \mathbf{1})_{\mathbf{R}}^{\mathbf{u}}(+-)
\end{array}\right],
\end{aligned}
$$

IR-bound. mass:

Simple geometric approach to fermion masses

Ist \& 2nd family
(Elementary)

3rd family
(Top = Most Composite)

4D CFT Interpretation

SM fermions Ψ are linearly coupled to a CFT operator:

$$
\begin{array}{r}
\mathcal{L}=\lambda \Psi \cdot \mathcal{O}_{\Psi}+\mathcal{L}_{\mathrm{CFT}} \\
\operatorname{Dim}\left[\mathcal{O}_{\Psi}\right]=\frac{3}{2}+\left|M_{\Psi}+\frac{1}{2}\right|
\end{array}
$$

$M_{\Psi} \geq 1 / 2 \rightarrow \gamma_{\lambda} \geq 0$ Irrelevant coupling $\left|M_{\Psi}\right|<1 / 2 \rightarrow \gamma_{\lambda}<0$ Relevant coupling

For a 125 GeV Higgs, the fermionic resonances of the top are lighter $\sim 600 \mathrm{GeV}$

Why this correlation?

$$
m_{h}^{2} \sim \frac{N_{c}}{\pi^{2}} \frac{m_{t}^{2}}{f^{2}} m_{Q}^{2} \sim(125 \mathrm{GeV})^{2}\left(\frac{m_{Q}}{700 \mathrm{GeV}}\right)^{2}
$$

But why the model can accommodate light resonances? Is it natural?

Why this correlation?

$$
m_{h}^{2} \sim \frac{N_{c}}{\pi^{2}} \frac{m_{t}^{2}}{f^{2}} m_{Q}^{2} \sim(125 \mathrm{GeV})^{2}\left(\frac{m_{Q}}{700 \mathrm{GeV}}\right)^{2}
$$

But why the model can accommodate light resonances? Is it natural? Yes

AdS/CFT dictionary: $\operatorname{Dim}\left[\mathcal{O}_{\Psi}\right]=\frac{3}{2}+\left|M_{\Psi}+\frac{1}{2}\right|$

free parameter becomes a free field \sim decouple from the CFT θ in this limit, new light states

Simpler derivation of the connection: Light Higgs - Light Resonance

Simpler derivation of the connection: Light Higgs - Light Resonance

- Deconstruction: Matsedonskyi,Panico,Wulzer; Redi,Tesi 12
of "Weinberg Sum Rules": Marzocca,Serone,Shu; AP, Riva 12
\Leftrightarrow As Das,Guralnik,Mathur,Low,Young 67 for the charged pion mass:

$$
m_{\pi^{+}}^{2}-m_{\pi^{0}}^{2} \simeq \frac{3 \alpha}{2 \pi} m_{\rho}^{2} \log 2 \simeq(37 \mathrm{MeV})^{2}
$$

Higgs potential

Gauge contribution (limit g'=0):

$$
V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}
$$

Encode the strong-sector contribution to the gauge propagator in the h-background
$\Pi_{W} \simeq \frac{p^{2}}{g^{2}}+\frac{\sin ^{2} h / f}{2}\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]$
Broken and Conserved
current-current correlators of the strong sector

Higgs Mass from Weinberg Sum Rules

Gauge contribution:

$$
\begin{aligned}
& V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}=\frac{1}{2} m_{h}^{2} h^{2}+\cdots \\
& \Leftrightarrow m_{h}^{2} \simeq \frac{9 g^{2}}{2 f^{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\Pi_{1}(p)}{p^{2}} \\
& \Pi_{1}=2\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]=\underbrace{2}+2 p^{2} \sum_{n}^{\infty} \frac{F_{a_{n}}^{2}}{p^{2}+m_{a_{n}}^{2}}-2 p^{2} \sum_{n}^{\infty} \frac{F_{\rho_{n}}^{2}}{p^{2}+m_{\rho_{n}}^{2}} \\
& \underbrace{\mathbf{N}}_{\substack{\text { Eucrge }}}
\end{aligned}
$$

Higgs Mass from Weinberg Sum Rules

Gauge contribution:

$$
\begin{aligned}
& V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}=\frac{1}{2} m_{h}^{2} h^{2}+\cdots \\
& \Rightarrow m_{h}^{2} \simeq \frac{9 g^{2}}{2 f^{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\Pi_{1}(p)}{p^{2}} \\
& \Pi_{1}=2\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]=f^{2}+2 p^{2} \sum_{n}^{\infty} \frac{F_{a_{n}}^{2}}{p^{2}+m_{a_{n}}^{2}}-2 p^{2} \sum_{n}^{\infty} \frac{F_{\rho_{n}}^{2}}{p^{2}+m_{\rho_{n}}^{2}}
\end{aligned}
$$

Procedure:

I) Demand convergence of the integral:

$$
\lim _{p^{2} \rightarrow \infty} \Pi_{1}(p)=0, \quad \lim _{p^{2} \rightarrow \infty} p^{2} \Pi_{1}(p)=0, \quad \text { "Weinberg Sum Rules" }
$$

Higgs Mass from Weinberg Sum Rules

Gauge contribution:

$$
\begin{aligned}
& V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}=\frac{1}{2} m_{h}^{2} h^{2}+\cdots \\
& \Rightarrow m_{h}^{2} \simeq \frac{9 g^{2}}{2 f^{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\Pi_{1}(p)}{p^{2}} \\
& \Pi_{1}=2\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]=f^{2}+2 p^{2} \sum_{n}^{\infty} \frac{F_{a_{n}}^{2}}{p^{2}+m_{a_{n}}^{2}}-2 p^{2} \sum_{n}^{\infty} \frac{F_{\rho_{n}}^{2}}{p^{2}+m_{\rho_{n}}^{2}}
\end{aligned}
$$

Procedure:

I) Demand convergence of the integral:

$$
\begin{aligned}
& \lim _{p^{2} \rightarrow \infty} \Pi_{1}(p)=0, \quad \lim _{p^{2} \rightarrow \infty} p^{2} \Pi_{1}(p)=0, \text { "Weinberg Sum Rules" } \\
& {\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right] \sim \frac{\langle\mathcal{O}\rangle}{p^{d-2}}+\cdots, \begin{array}{c}
\text { Just from the OPE } \\
\text { at large } \mathrm{P}
\end{array}} \\
& d=\operatorname{Dim}[\mathcal{O}] \\
& \rightarrow \text { symmetry breaking operator } \quad \Leftrightarrow \text { WSR }=\text { demand } \mathrm{d}>4
\end{aligned}
$$

Higgs Mass from Weinberg Sum Rules

Gauge contribution:

$$
\begin{aligned}
& V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}=\frac{1}{2} m_{h}^{2} h^{2}+\cdots \\
& \Rightarrow m_{h}^{2} \simeq \frac{9 g^{2}}{2 f^{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\Pi_{1}(p)}{p^{2}} \\
& \Pi_{1}=2\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]=f^{2}+2 p^{2} \sum_{n}^{\infty} \frac{F_{a_{n}}^{2}}{p^{2}+m_{a_{n}}^{2}}-2 p^{2} \sum_{n}^{\infty} \frac{F_{\rho_{n}}^{2}}{p^{2}+m_{\rho_{n}}^{2}}
\end{aligned}
$$

Procedure:

I) Demand convergence of the integral:

$$
\lim _{p^{2} \rightarrow \infty} \Pi_{1}(p)=0, \quad \lim _{p^{2} \rightarrow \infty} p^{2} \Pi_{1}(p)=0, \quad \text { "Weinberg Sum Rules" }
$$

e.g. in QCD:

$$
\Pi_{L R}(p)=\Pi_{V}-\Pi_{A} \rightarrow\langle q \bar{q}\rangle^{2} / p^{4}
$$

Higgs Mass from Weinberg Sum Rules

Gauge contribution:

$$
\begin{aligned}
& V(h)=\frac{9}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \Pi_{W}=\frac{1}{2} m_{h}^{2} h^{2}+\cdots \\
& \Rightarrow m_{h}^{2} \simeq \frac{9 g^{2}}{2 f^{2}} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{\Pi_{1}(p)}{p^{2}} \\
& \Pi_{1}=2\left[\left\langle J_{\hat{a}} J_{\hat{a}}\right\rangle-\left\langle J_{a} J_{a}\right\rangle\right]=f^{2}+2 p^{2} \sum_{n}^{\infty} \frac{F_{a_{n}}^{2}}{p^{2}+m_{a_{n}}^{2}}-2 p^{2} \sum_{n}^{\infty} \frac{F_{\rho_{n}}^{2}}{p^{2}+m_{\rho_{n}}^{2}}
\end{aligned}
$$

Procedure:

I) Demand convergence of the integral:

$$
\lim _{p^{2} \rightarrow \infty} \Pi_{1}(p)=0, \quad \lim _{p^{2} \rightarrow \infty} p^{2} \Pi_{1}(p)=0, \text { "Weinberg Sum Rules" }
$$

2) The correlators are dominated by the lowest resonances (minimal number to satisfy WSR)

Result: two resonances needed: ρ and a_{1}

$$
\begin{gathered}
\Pi_{1}(p)=\frac{f^{2} m_{\rho}^{2} m_{a_{1}}^{2}}{\left(p^{2}+m_{\rho}^{2}\right)\left(p^{2}+m_{a_{1}}^{2}\right)} \\
\Rightarrow m_{h}^{2} \simeq \frac{9 g^{2} m_{\rho}^{2} m_{a_{1}}^{2}}{64 \pi^{2}\left(m_{a_{1}}^{2}-m_{\rho}^{2}\right)} \log \left(\frac{m_{a_{1}}^{2}}{m_{\rho}^{2}}\right)
\end{gathered}
$$

Similar result as the electromagnetic contribution to the charged pion mass

Similarly, for the top contribution...

$$
\mathcal{L}=\mathcal{L}_{\text {strong }}+\mathcal{L}_{\mathrm{SM}}+J_{\text {strong }}^{\mu} W_{\mu}+\mathcal{O}_{\text {strong }} \cdot \psi_{\mathrm{SM}}
$$

we must specify which rep of $\mathrm{SO}(5)$

$$
\mathrm{MCHM}_{5} \equiv \operatorname{Rep}[\mathcal{O}]=5
$$

Top contribution to the Higgs potential:

Encode the strong sector contribution to the top propagator in the h-background
$V(h)=-2 N_{c} \int \frac{d^{4} p}{(2 \pi)^{4}} \log \left[-p^{2}\left(\Pi^{t_{L}} \Pi^{t_{R}}\right)-\left|\Pi^{t_{L} t_{R}}\right|^{2}\right]$

$$
=-m^{2} h^{2}+\lambda_{h} h^{4}+\cdots
$$

Triggers EWSB!

Higgs mass contribution:

$$
m_{h}^{2} \simeq \frac{8 N_{c} v^{2}}{f^{4}} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\frac{\left|M_{1}^{t}\right|^{2}}{p^{2}}+\frac{1}{4}\left(\Pi_{1}^{t_{L}}\right)^{2}+\left(\Pi_{1}^{t_{R}}\right)^{2}\right]
$$

Higgs mass contribution:

$$
\begin{aligned}
& m_{h}^{2} \simeq \frac{8 N_{c} v^{2}}{f^{4}} \int \frac{d^{4} p}{(2 \pi)^{4}}\left[\frac{\left|M_{1}^{t}\right|^{2}}{p^{2}}+\frac{1}{4}\left(\Pi_{1}^{t_{L}}\right)^{2}+\left(\Pi_{1}^{t_{R}}\right)^{2}\right] \\
&\left\{\begin{array}{l}
\Pi_{1}^{t_{L}}(p)
\end{array}\right) \Pi_{Q_{1}}^{L}(p)-\Pi_{Q_{4}}^{L}(p), \\
& \Pi_{1}^{t_{R}}(p)=\Pi_{Q_{1}}^{R}(p)-\Pi_{Q_{4}}^{R}(p), \\
& M_{1}^{t}(p)=M_{Q_{1}}(p)-M_{Q_{4}}(p) .
\end{aligned}
$$

Large $\mathrm{N}: \quad \Pi_{Q_{4}}^{L}(p)=\sum_{n} \frac{\left|F_{Q_{4}^{(n)}}^{L}\right|^{2}}{p^{2}+m_{Q_{4}^{(n)}}^{2}}$,
\hookrightarrow fermion-fermion correlators

$$
\mathbf{5}=\mathbf{4}+\mathrm{I} \text { of } \mathrm{SO}(4):
$$

$$
\Pi_{Q_{1}}^{L}(p)=\sum_{n} \frac{\left|F_{Q_{n}^{(n)}}^{L}\right|^{2}}{p^{2}+m_{Q_{1}}^{(n)}},
$$

$$
Q_{1} \in \mathbf{1}
$$

$$
Q_{4} \in \mathbf{4}
$$

similarly for $\Pi_{Q_{4,1}}^{R}$ with the replacement $L \rightarrow R$, while

$$
M_{Q_{4}}(p)=\sum_{n} \frac{F_{Q_{4}^{(n)}}^{L} F_{Q_{4}^{(n)}}^{R *} m_{Q_{4}^{(n)}}}{p^{2}+m_{Q_{4}^{(n)}}^{2}}, \quad M_{Q_{1}}(p)=\sum_{n} \frac{F_{Q_{1}^{(n)}}^{L} F_{Q_{1}^{(n)}}^{R *} m_{Q_{1}^{(n)}}}{p^{2}+m_{Q_{1}^{(n)}}^{2}}
$$

Demanding again WSR:

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} M_{1}^{t}(p)=0 \\
& \lim _{p \rightarrow \infty} p^{n} \Pi_{1}^{t_{L, R}}(p)=0(n=0,2)
\end{aligned}
$$

... being fulfilled with the minimal set of resonances, two in this case, Q1 and Q_{4} :

$$
\begin{aligned}
\Pi_{1}^{t_{L, R}} & =\left|F_{Q_{4}}^{L, R}\right|^{2} \frac{\left(m_{Q_{4}}^{2}-m_{Q_{1}}^{2}\right)}{\left(p^{2}+m_{Q_{4}}^{2}\right)\left(p^{2}+m_{Q_{1}}^{2}\right)} \\
M_{1}^{t}(p) & =\left|F_{Q_{4}}^{L} F_{Q_{4}}^{R *}\right| \frac{m_{Q_{4}} m_{Q_{1}}\left(m_{Q_{4}}-m_{Q_{1}} e^{i \theta}\right)}{\left(p^{2}+m_{Q_{4}}^{2}\right)\left(p^{2}+m_{Q_{1}}^{2}\right)}\left(1+\frac{p^{2}}{m_{Q_{4}} m_{Q_{1}}} \frac{m_{Q_{1}}-m_{Q_{4}} e^{i \theta}}{m_{Q_{4}}-m_{Q_{1}} e^{i \theta}}\right)
\end{aligned}
$$

WSR + Minimal set of resonances $\left(Q_{1}\right.$ and $\left.Q_{4}\right)$

+ proper EWSB

$$
m_{h}^{2} \simeq \frac{N_{c}}{\pi^{2}}\left[\frac{m_{t}^{2}}{f^{2}} \frac{m_{Q_{4}}^{2} m_{Q_{1}}^{2}}{m_{Q_{1}}^{2}-m_{Q_{4}}^{2}} \log \left(\frac{m_{Q_{1}}^{2}}{m_{Q_{4}}^{2}}\right)\right]
$$

For a 125 GeV Higgs:

WSR + Minimal set of resonances $\left(Q_{1}\right.$ and $\left.Q_{4}\right)$

+ proper EWSB

$$
m_{h}^{2} \simeq \frac{N_{c}}{\pi^{2}}\left[\frac{m_{t}^{2}}{f^{2}} \frac{m_{Q_{4}}^{2} m_{Q_{1}}^{2}}{m_{Q_{1}}^{2}-m_{Q_{4}}^{2}} \log \left(\frac{m_{Q_{1}}^{2}}{m_{Q_{4}}^{2}}\right)\right]
$$

For a 125 GeV Higgs:

If the 125 GeV Higgs is composite...

we must find at the LHC
color vector-like fermions in the 4 or I rep. of SO(4):

$$
\downarrow
$$

EM charges: 5/3,2/3,-I/3

Color vector-like fermions with charge 5/3:

If this fermion is light, it can be double produced:

same-sign di-leptons

Contino,Servant
Mrazek, Wulzer
Aguilar-Saavedra,
Dissertori, Furlan,Moorgat,Nef

Color vector-like fermions with charge 5/3:

If this fermion is light, it can be double produced:

ATLAS-CONF-2012-130:
Contino,Servant
Mrazek, Wulzer

$$
M_{T_{5 / 3}} \gtrsim 700 \mathrm{GeV}
$$

Higgs couplings

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)
Giudice, Grojean,AP,Rattazzi 07

$$
\begin{aligned}
& \frac{g_{h W W}}{g_{h W W}^{\mathrm{SM}}}=\sqrt{1-\frac{v^{2}}{f^{2}}} \\
& \frac{g_{h f f}}{g_{h f f}^{\mathrm{SM}}}=\frac{1-(1+n) \frac{v^{2}}{f^{2}}}{\sqrt{1-\frac{v^{2}}{f^{2}}}}
\end{aligned}
$$

$$
n=0,1,2, \ldots
$$

$\mathrm{MCHM}_{5,10}$
small deviations on the $h \gamma \gamma(\mathrm{gg})$-coupling due to the Goldstone nature of the Higgs

$g_{\text {hWW }}^{\text {SW }} \quad \hookrightarrow$ Too premature to see deviations for v/f~1/2!

Other symmetry-breaking patterns $\mathrm{G} \rightarrow \mathrm{H}$:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(\mathrm{I}, \mathrm{I})$
	$\mathrm{O}(4) \times \mathrm{O}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(\mathrm{I}, \mathrm{I})+(\mathrm{I}, \mathrm{I})$
	G_{2}	$7=(\mathrm{I}, 3)+(2,2)$
\ldots	\ldots	\ldots

Other symmetry-breaking patterns $\mathrm{G} \rightarrow \mathrm{H}$:

G	H	PGB
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	$4=(2,2)$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	$5=(2,2)+(1, \mathrm{I})$
	$\mathrm{O}(4) \times \mathrm{O}(2)$	$8=(2,2)+(2,2)$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	$6=(2,2)+(1, \mathrm{I})+(\mathrm{I}, \mathrm{I})$
	G_{2}	$7=(\mathrm{I}, 3)+(2,2)$
\ldots	\ldots	\ldots

One doublet

+ Singlet
Gripaios, AP, Riva, Serra
SB of minimal TC: Just by replacing $\mathrm{SU}(3) \mathrm{c}$ by $\mathrm{SU}(2) \mathrm{c}$

If $\mathrm{SO}(6) \rightarrow \mathrm{SO}(5)$ breaking pattern: Doublet $\mathrm{h}+$ Singlet η

New player in the game:

- Mass of eta very model-dependent: depends on how the $\mathrm{SO}(2) \subset \mathrm{SO}(6)$ is explicitly broken
- If extra parity $\eta \rightarrow-\eta$ (e.g. if $O(6)): ~ \eta$ can be Dark Matter !

Conclusions

Strong dynamics still possible at the TeV :

- Composite Higgs as a PGB a natural possibility (Higgs mass at the loop level)
- A 125 GeV composite Higgs implies either from AdS/CFT, Weinberg Sum rules, deconstructed models:
Fermionic colored vector-like resonances
(either $\mathrm{Q}_{\text {ем }}=5 / 3,2 / 3,-1 / 3$) with masses ~ 700 GeV
- It gives clear predictions for the Higgs couplings and their deviations from the SM

Hope to see them at the LHC !

