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A Higgs-like state has been discovered

with no significant deviations from a SM Higgs!

Signal Strength

13Higgs Properties - Moriond QCD3/14/2013

σ/ σSM = 0.88 +/- 0.21

ggH VBFH VH ttH
H→γγ  

H→ZZ 

H→WW   

H→ττ   

H→bb  

Signal strength 

• Combination of 
• :�=�+�ĺ�EE������������(4.7 fb-1 + 13 fb-1) 

• +�ĺ�ĲĲ                     (4.6 fb-1 + 13 fb-1) 

• H ĺ�WW(*) ĺ�lȞlȞ   (4.6 fb-1 + 20.7 fb-1) 

• +�ĺ�ȖȖ                    (4.8 fb-1 + 20.7 fb-1) 

• +�ĺ�==(*) ĺ��l        (4.6 fb-1 + 20.7 fb-1) 

• Signal strength ȝ = ı/ıSM measured assuming mH=125.5 GeV 
• Only ±4% change to combined ȝ for ±1 GeV 

• Combined ȝ = 1.30 ± 0.13 (stat) ± 0.14 (sys) 
• Compatibility between measurements and SM (ȝ=1) 

• Common ȝ vs SM:                                                 9% 
• with rectangular QCD scale/PDF constraints:     40% 
• All ȝbb, ȝĲĲ, ȝWW, ȝȖȖ, ȝZZ vs ȝ=1:                             8%  (5 d.o.f) 
• All ȝbb, ȝĲĲ, ȝWW, ȝȖȖ, ȝZZ vs ȝ=1.30:                     13%   (4 d.o.f) 

• ATLAS also sets limits (95%CL; not used in combination): 
• +�ĺ�ȝȝ:    ȝ<9.8                          (20.7 fb-1) 

• +�ĺ�=Ȗ:    ȝ<18.2     (4.6 fb-1 + 20.7 fb-1) 

Tim Adye - RAL Higgs Boson Properties in ATLAS 6 

Update today! 

Update last  week! 

Update last  week! 

New last  week! 

New last  week! 



What does data tell us?

m2
H = �v2

~  0.26 (perturbative coupling)

Origin of the EWSB potential → a weakly-coupled theory

mH ⇡ 125 GeVLight state:

 Is this the end of strong dynamics 
for the EWSB?

If it has to do with EWSB:



Is this the end of strong dynamics 
for the EWSB?

Not really...

A light scalar can emerge from the strong sector 
due to symmetries:

1) Supersymmetry

2) Scale invariance:  Dilaton

3) Global symmetries:  Pseudo-Goldstones



1) Supersymmetry



Strong
dynamics at TeV

Elementary Higgs
 (SUSY)

Two schools with “orthogonal” approaches                



Blended Models for EWSB: 
Combined approach

Susy+Stro
ng int. a

t TeV

Blended model’s t
errit

ory

Strong
dynamics at TeV

Elementary Higgs
 (SUSY)



Why blending?

• In the MSSM is difficult to get a Higgs of 125 
GeV (needs large susy breaking)

 extra contributions 
if the Higgs is composite

• MSSM needs a strong sector to break supersymmetry
 why not at the TeV?



Partly supersymmetric models:

Gherghetta,AP
Sundrum,

Redi,Gripaios
Gherghetta,Harling,Setzer

SM +
Supersymmetric

Strong sector
H, Q3, U3

Sparticles:  Higgsino and Stops

Signal:  gg→ t t → (t H) (t H)~~ ~ ~

Some recent activity using 
Seiberg dualities

Examples:



2) Spontaneously broken 
scale invariance



Not, a priori, guarantees a naturally light dilaton!

x  →  Λ x
π → π(Λ x) + ln Λ

Under dilatations:

A potential is allowed:   ∫d⁴x  V = ∫d⁴x  κ φ⁴        κ=const

φ = const≠0  only if  κ=0  (tuning!)

or   φ =e   → Λ eπ π

Fubini 76

Dilaton:

2) Dilatations



Explicit breaking must be introduced to the CFT:  

Add   λΟd  with   β(λ)≠0

Now we have:      V(φ)=κ(λ(φ)) φ⁴    (Coleman-Weinberg potential)

Non-trivial minimum if  κ(λ(φ))  crosses zero:

κ
φ

V(φ)

φ
φ0

Small dilaton mass → Flattish potential → slow running of κ →  slow running of λ

Dim[λ]=ε   →    mᵩ²~ β(λ)~ε   (Not like in QCD)

λ must be an almost marginal deformation of the CFT 



The AdS/CFT dictionary, tells us how to be realized 
in AdS spaces (RS-setup):

Dilaton  →  Radion

V(φ)  →  T(φ)  tension of the IR-brane 

λ≠0    →    VEV for the scalar 
                      on the AdS boundary

PGB in 5D!!

CFT4 →   AdS5    
Rattazzi,Contino,A.P.

➥ Model of a naturally light dilaton

Οd~4     →  Scalar in the bulk with mass ~ ε

mᵩ² ~ ε 



Most genuine Higgs coupling: 
(discloses its role in EWSB) 

Higgs boson into massive gauge bosons, which will be discussed later in detail. Using the

equivalence theorem and the Lagrangian eq. (1.58), one can write immediately the partial

decay width of the Higgs boson into two longitudinal Z bosons [or W bosons]

Γ(H → ZZ) ∼ Γ(H → w0w0) =

(
1

2MH

) (
2! M2

H

2v

)2 1

2

(
1

8π

)
→

M3
H

32πv2
(1.165)

where the first parenthesis is for the flux factor, the second for the amplitude squared, the

factor 1
2 is for the two identical final particles, and the last parenthesis is for the phase space

factor. For the decay H → WW , one simply needs to remove the statistical factor to account

for both W± states

Γ(H → W+W−) # 2Γ(H → ZZ) (1.166)

The behavior, ΓH ∝ M3
H , compared to ΓH ∝ MH for decays into fermions for instance, is

due to the longitudinal components that grow with the energy [which is MH in this context].

H
V

V

• •
•

+ + + · · ·

Figure 1.16: Generic diagrams for the one– and two–loop corrections to Higgs boson decays.

Let us have a brief look at these decays when higher–order radiative corrections, involving

the Higgs boson and therefore the quartic coupling λ, are taken into account. Including the

one–loop and two–loop radiative corrections, with some generic Feynman diagrams shown

in Fig. 1.16, the partial Higgs decay width into gauge bosons is given by [121, 122]

Γtot # ΓBorn

[
1 + 3λ̂+ 62λ̂2 + O(λ̂3)

]
(1.167)

with λ̂ = λ/(16π2). If the Higgs boson mass is very large, MH ∼ O(10 TeV), the one loop

term becomes close to the Born term, 3λ̂ ∼ 1, and the perturbative series is therefore not

convergent. Even worse, already for a Higgs boson mass in the TeV range, MH ∼ O(1 TeV),

the two–loop contribution becomes as important as the one–loop contribution, 3λ̂ ∼ 62λ̂2.

Hence, for perturbation theory to hold, MH should be smaller than about 1 TeV.

In addition, the partial decay widths become extremely large for a very heavy Higgs

particle. Indeed, taking into account only W and Z decay modes, the total width is

Γ(H → WW + ZZ) ∼ 500 GeV (MH/1 TeV)3 (1.168)

63

x

Falkowski,Riva,Urbano 13

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0

1

2

3

4

cV

D
c2

EW
PT

CM
S+

AT
LA

S

To
ta

l

⇤ = 3TeV

cV =
ghV V

gSMhV V

it behaves as a 
Higgs doublet!

But present data is telling us that the
125 GeV state has to do with EWSB



Furthermore no significant deviations 
from a SM Higgs!

Signal Strength
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Update today! 

Update last  week! 

Update last  week! 

New last  week! 

New last  week! 



3) Higgs as a Pseudo-
Goldstone boson 

(PGB)



Spectrum:

inspired by QCD where one observes
 that the (pseudo) scalar are the lightest states

Mass protected by the 
global QCD symmetry!

Are Pseudo-Goldstone
 bosons (PGB)

⇥ � ⇥ + �

�

�

�GeV

100 MeV

3) Higgs as a composite PGB:



We’d like the spectrum of the new strong sector to be:

Pseudo-Goldstone
 bosons (PGB)

h100 GeV

TeV

Can the light Higgs be a kind of a pion
 from a new strong sector?

�



Potential from some new strong dynamics at the TeV:

H
4 Goldstones 

 Higgs doublet

➠
e.g.  SO(5) ➝ SO(4)

if global symmetry breaking



H

H

SM-loop effects:

EWSB 
minimum

SM-field couplings to the strong sector 
break the global SO(5)

Potential from some new strong dynamics at the TeV:

4 Goldstones 

 Higgs doublet

➠
e.g.  SO(5) ➝ SO(4)

if global symmetry breaking



H

HSM-loop
effects

EWSB 
minimum

two symmetry-
breaking scales:

f  ≳ 500 GeV

v ≈ 246 GeV

Potential from some new strong dynamics at the TeV:

4 Goldstones 

 Higgs doublet

➠
e.g.  SO(5) ➝ SO(4)

if global symmetry breaking



Example:  Just replace in QCD SU(3)c by SU(2)c 

Galloway, Evans, Luty, Tacchi 10

5 Goldstones = Higgs doublet 
                     and a singlet    

 L, 
c
R

if  <𝛹𝛹>  breaks  SU(4)~SO(6)  →  SO(5)

2 flavors: 2L + 2R = 4 of SU(4) 



= 0 it’s a Goldstoneh

h

contribution from 
the strong sector

h hh

SM fields

V (h) =
g2SMm2

⇢

16⇡2
h2 + · · ·

h

Difficult to get predictions
due to the intractable

strong dynamics!

+

➥

Higgs Mass



AdS/CFT approach 

Strongly-coupled 
systems   

   in the   Large  Nc 
               Large  λ≡g²Nc

Weakly-coupled 
Gravitational systems 
in higher-dimensions

Very useful to derive properties of composite states 
from studying weakly-coupled fields 
in warped extra-dimensional models 

A possibility to move forward has been to use the...



in a AdS5  throat
hard/soft

 wall

Mass gap ~ TeV

Holographic composite PGB Higgs model
Agashe,Contino,A.P.

ds

2 =
L

2

z

2

⇥
dx

2 + dz

2
⇤

Holo. coordinate z ~ 1/E



in a AdS5  throat
hard/soft

 wall

Mass gap ~ TeV

SO(5) gauge theory

Holographic composite PGB Higgs model

ds

2 =
L

2

z

2

⇥
dx

2 + dz

2
⇤

Holo. coordinate z ~ 1/E

Agashe,Contino,A.P.



in a AdS5  throat
hard/soft

 wall

Mass gap ~ TeV

SO(5) gauge theory

Symmetry : SO(4)

Holographic composite PGB Higgs model

Breaking of symmetry 
by boundary conditions

ds

2 =
L

2

z

2

⇥
dx

2 + dz

2
⇤

Holo. coordinate z ~ 1/E

Agashe,Contino,A.P.



Massless Spectrum

hard/soft
 wall

Higgs = 5th component 
              of the SO(5)/SO(4) gauge bosons
         (Gauge-Higgs unification, Hosotani Mechanism,...)
  ➥ Normalizable modes = Composite

h



What about fermions?
(Main difficulty in composite models)
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Strongly interacting electroweak theories and their five-dimensional analogs at the LHC11

are [10]

ξq = (Ψq L ,Ψq R) =




(2,2)qL =

[
q′L(−+)
qL(++)

]
, (2,2)qR =

[
q′R(+−)
qR(−−)

]

(1,1)qL(−−) , (1,1)qR(++)



 ,

ξu = (Ψu L ,Ψu R) =

[
(2,2)uL(+−) , (2,2)uR(−+)

(1,1)uL(−+) , (1,1)uR(+−)

]

, (1.20)

where ξq,u transform as 52/3 of SO(5)×U(1)X . In Eq. (1.20) we
have grouped the fields of each multiplet ξq,u in representations of
SU(2)L×SU(2)R, and used the fact that a fundamental of SO(5) decom-
poses as 5 = (2,2)⊕ (1,1). Localized on the IR-boundary, we consider the
most general set of mass terms invariant under O(4)×U(1)X :

m̃u (2,2)
q

L(2,2)uR + M̃u (1,1)
q

R(1,1)uL + h.c. (1.21)

At energies below the mass of the KK-states, mρ, the spectrum corresponds
to that of the SM with a Higgs. The low-energy theory for the PGB Higgs
Σ, written in a SO(5)-invariant way, is given by

Leff = f2
π

[
1

2
(DµΣ) (DµΣ)T +

cY

mρ
Ψ̄i

q LΣ
iΣjΨj

u R

+
cS

m2
ρ
ΣFµνFµνΣT + V (Σ) + . . .

]
. (1.22)

From the kinetic term of Σ we obtain M2
W = g2(shfπ)2/4 where we have

defined sh ≡ sinh/fπ. This implies

v ≡ εfπ = shfπ = 246 GeV . (1.23)

The value of ε can vary between 0 (no EWSB) and 1 (maximal EWSB) and
we will discuss later how it is determined. The second term of Eq. (1.22),
in which Ψq L (Ψu R) transforms as a 52/3 and contains the SM qL (uR)
plus spurions, is responsible for the fermion masses:

mu = cY
f2

π

mρ
shch , (1.24)

where cY ∼ λqλu with λq,u scaling as in the Higgsless case -see Eqs. (1.14),
(1.16) and (1.17). FCNC in this model are under control as in the Higgsless
case. It is important to notice from Eq. (1.24) that to generate non-zero
fermion masses we must require 0 < shch < 1, i.e. 0 < ε < 1. Therefore,
maximal EWSB ε = 1 is not allowed.

The fermionic sector:  We have to choose the bulk 
symmetry representation of the fermions and b.c.  giving 

only the 4D massless spectrum of the SM

Up-quark sector:
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IR-bound. mass:
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hard/soft
 wall�(z)

�(z)

h

3rd family1st & 2nd 
family (Top = Most Composite)

(Elementary)

Simple geometric approach to fermion masses



4D CFT Interpretation

L = �� · O� + LCFT

SM fermions       are linearly coupled to a CFT operator: 

Contino,AP

Dim[O ] = 3

2
+ |M +

1

2
|

5D mass

M � 1/2 ! �� � 0

M < 1/2 ! �� < 0 Relevant coupling

Irrelevant coupling
| |
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For a 125 GeV Higgs, the fermionic  
  resonances of the top are lighter ~ 600 GeV

Contino,DaRold, AP 07m⇢ = 2.5 TeV , f = 500 GeV



Why this correlation?

m2
h ⇠ Nc

⇡2

m2
t

f2
m2

Q ⇠ (125 GeV)2
⇣ mQ

700 GeV

⌘2

But why the model can accommodate light resonances?
Is it natural?



Why this correlation?

m2
h ⇠ Nc

⇡2

m2
t

f2
m2

Q ⇠ (125 GeV)2
⇣ mQ

700 GeV

⌘2

But why the model can accommodate light resonances?

Dim[O ] = 3

2
+ |M +

1

2
|AdS/CFT dictionary:

becomes a free field ~ decouple from the CFT

➥ in this limit,  new light states

M = �1/2 ! Dim[O ] = 3/2

Is it natural? Yes

5D mass:
free parameter



Simpler derivation of the connection:
Light Higgs - Light Resonance 



Simpler derivation of the connection:
Light Higgs - Light Resonance 

✒ Deconstruction: Matsedonskyi,Panico,Wulzer; Redi,Tesi 12

✒ “Weinberg Sum Rules”: Marzocca,Serone,Shu; AP, Riva 12

➥ As  Das,Guralnik,Mathur,Low,Young 67  

   for the charged pion mass:

m2
⇡+ �m2

⇡0 ' 3↵

2⇡
m2

⇢ log 2 ' (37 MeV)

2

Exp.  (35 MeV)²

quite successful!

�

⇡+ ⇡+



Higgs potential

Gauge contribution (limit g’=0):

where T aL , Y are respectively the generators of SU(2)L and hypercharge. Eq. (17) gives

S = 4πΠ′
1(0)ε

2 . (18)

The T parameter does not receive any contribution at tree level from the CFT due to the custodial

symmetry. Nevertheless, it can be induced at the quantum level due to top interactions. We will

discuss in section 4 the size of these contributions. Apart from S and T , there are other two

parameters constrained by LEP: W and Y , defined in [9]. They are however quite small in the

present model, since they arise from dimension-six operators and are thus suppressed by a factor

(g2f2
π/m2

ρ) compared to S and T .

2.1 Higgs potential and vacuum misalignment

A virtual exchange of elementary fields can transmit the explicit breaking of SO(5) from the ele-

mentary sector to the CFT and generate a potential for the PGB Higgs. The dominant contribution

comes at one-loop level from the elementary SU(2)L gauge bosons and top quark. This is given by

the Coleman-Weinberg potential

V (h) =
9

2

∫
d4p

(2π)4
log ΠW − (2Nc)

∫
d4p

(2π)4

[
log ΠbL

+ log
(
p2ΠtLΠtR − Π2

tLtR

) ]
, (19)

where Πi(p) are the self-energies of the corresponding SM fields in the background of h. These can

can be written as functions of the form factors of eq. (9), by using eq. (10):

ΠW = Π0 +
Π1

4
sin2 h

fπ
,

ΠtLtR = Mu
1 sin

h

fπ
,

ΠbL
= ΠtL = Πq

0 + Πq
1 cos

h

fπ
,

ΠtR = Πu
0 − Πu

1 cos
h

fπ
.

(20)

Apart from a constant piece, the potential of eq. (19) is finite since the form factors Π1 and M1 drop

with the momentum as |〈Φ〉|2/p2d, where Φ is the CFT operator of dimension d $ 1 responsible for

the SO(5) breaking. 2 This fast decrease with the momentum allows us to expand the logarithms

in eq. (19) and write the approximate formula 3
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− β sin2 h

fπ
, (21)

2In fact, in the 5D model the form factors drop exponentially with the momentum, corresponding to d → ∞.
3This approximate formula leaves out the top logarithmic contribution to the Higgs quartic coupling ∝

log(mt/mρ) ∼ log ε since it comes from a subleading term in the expansion. This contribution can be large if ε
is very small, and in that case it should be incorporated. For the qualitative discussion presented here, we will
neglect it. For the 5D calculation of the next section, however, we will take the full potential eq. (19).
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Apart from a constant piece, the potential of eq. (19) is finite since the form factors Π1 and M1 drop

with the momentum as |〈Φ〉|2/p2d, where Φ is the CFT operator of dimension d $ 1 responsible for

the SO(5) breaking. 2 This fast decrease with the momentum allows us to expand the logarithms

in eq. (19) and write the approximate formula 3

V (h) % α cos
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, (21)

2In fact, in the 5D model the form factors drop exponentially with the momentum, corresponding to d → ∞.
3This approximate formula leaves out the top logarithmic contribution to the Higgs quartic coupling ∝

log(mt/mρ) ∼ log ε since it comes from a subleading term in the expansion. This contribution can be large if ε
is very small, and in that case it should be incorporated. For the qualitative discussion presented here, we will
neglect it. For the 5D calculation of the next section, however, we will take the full potential eq. (19).
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1) Demand convergence of the integral:

We assume that in the TeV strong sector d > 4, meaning that the integral
R
d4p⇧1(p)/⇧0(p) is

convergent for ⇧0 ⇠ p2, assuring the finiteness of the Higgs-dependent part of the potential Eq. (1).

This convergence is equivalent to imposing a set of requirements on ⇧1(p), usually known as the

Weinberg sum-rules [9]. These are

lim
p

2!1
⇧1(p) = 0 , lim

p

2!1
p2⇧1(p) = 0 , (4)

that give two constraints to be fulfilled by the decay constants and masses in Eq. (3). Following

Ref. [10], we can now make the extra assumption of truncating the infinite sum in Eq. (3) to include

only the minimal number of resonances needed to satisfy the Weinberg sum-rules Eq. (4). One can

easily realize that only two are needed, ⇢1 ⌘ ⇢ and a1. Using the two constraints Eq. (4) we can

determine F
⇢

and F
a1 , and then calculate ⇧1 as a function of the two resonance masses 1:

⇧1(p) =
f 2m2

⇢

m2
a1

(p2 +m2
⇢

)(p2 +m2
a1
)
. (5)

Eq. (5) can now be used to obtain the gauge contribution to the Higgs potential Eq. (1). In an

expansion g2 ⌧ 1, we have
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and in the calculation of � the infrared divergence has been regularized with the W mass. Notice

that, being ↵ positive, the gauge contribution alone cannot induce electroweak symmetry breaking

(EWSB).

2.2 Top contributions in the MCHM5

We can now repeat the same procedure for the fermionic contributions to the Higgs potential,

concentrating on the one from the top quark, which is usually the most important one and generates

a Higgs potential with an EWSB minimum.

1This result is straightforward to obtain in the following alternative way. Requiring that ⇧1 has two poles
corresponding to the two massive resonances implies that the denominator of ⇧1 must be (p2 +m2

⇢)(p
2 +m2

a1
); the

numerator can easily be obtained by requiring ⇧1(0) = f2.
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Gauge contribution:

where T aL , Y are respectively the generators of SU(2)L and hypercharge. Eq. (17) gives

S = 4πΠ′
1(0)ε

2 . (18)

The T parameter does not receive any contribution at tree level from the CFT due to the custodial

symmetry. Nevertheless, it can be induced at the quantum level due to top interactions. We will

discuss in section 4 the size of these contributions. Apart from S and T , there are other two

parameters constrained by LEP: W and Y , defined in [9]. They are however quite small in the

present model, since they arise from dimension-six operators and are thus suppressed by a factor

(g2f2
π/m2

ρ) compared to S and T .

2.1 Higgs potential and vacuum misalignment

A virtual exchange of elementary fields can transmit the explicit breaking of SO(5) from the ele-

mentary sector to the CFT and generate a potential for the PGB Higgs. The dominant contribution

comes at one-loop level from the elementary SU(2)L gauge bosons and top quark. This is given by

the Coleman-Weinberg potential

V (h) =
9

2

∫
d4p

(2π)4
log ΠW − (2Nc)

∫
d4p

(2π)4

[
log ΠbL

+ log
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p2ΠtLΠtR − Π2
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) ]
, (19)

where Πi(p) are the self-energies of the corresponding SM fields in the background of h. These can

can be written as functions of the form factors of eq. (9), by using eq. (10):
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Π1

4
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fπ
,
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1 sin
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,
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(20)

Apart from a constant piece, the potential of eq. (19) is finite since the form factors Π1 and M1 drop

with the momentum as |〈Φ〉|2/p2d, where Φ is the CFT operator of dimension d $ 1 responsible for

the SO(5) breaking. 2 This fast decrease with the momentum allows us to expand the logarithms

in eq. (19) and write the approximate formula 3

V (h) % α cos
h

fπ
− β sin2 h

fπ
, (21)

2In fact, in the 5D model the form factors drop exponentially with the momentum, corresponding to d → ∞.
3This approximate formula leaves out the top logarithmic contribution to the Higgs quartic coupling ∝

log(mt/mρ) ∼ log ε since it comes from a subleading term in the expansion. This contribution can be large if ε
is very small, and in that case it should be incorporated. For the qualitative discussion presented here, we will
neglect it. For the 5D calculation of the next section, however, we will take the full potential eq. (19).
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Apart from a constant piece, the potential of eq. (19) is finite since the form factors Π1 and M1 drop

with the momentum as |〈Φ〉|2/p2d, where Φ is the CFT operator of dimension d $ 1 responsible for

the SO(5) breaking. 2 This fast decrease with the momentum allows us to expand the logarithms

in eq. (19) and write the approximate formula 3
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, (21)

2In fact, in the 5D model the form factors drop exponentially with the momentum, corresponding to d → ∞.
3This approximate formula leaves out the top logarithmic contribution to the Higgs quartic coupling ∝

log(mt/mρ) ∼ log ε since it comes from a subleading term in the expansion. This contribution can be large if ε
is very small, and in that case it should be incorporated. For the qualitative discussion presented here, we will
neglect it. For the 5D calculation of the next section, however, we will take the full potential eq. (19).
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⇧1 = 2 [hJâJâi � hJaJai] = f2 + 2p2
1X

n

F 2
an

p2 +m2
an

� 2p2
1X

n

F 2
⇢n

p2 +m2
⇢n

and MCHM10. In section 3 we extend this calculation to other MCHM and derive a generic lower-

bound on the Higgs mass. In section 4 we summarize our results. In Appendix A we give the

explicit relations between the top-quark form-factors and the correlators of the strong sector, while

in Appendix B we give the e↵ective lagrangian of the top in certain MCHM models of interest.

2 The Higgs mass in the MCHM

In this section, we want to calculate the Higgs mass as a function of the resonance masses of the

strong sector in di↵erent realizations of the MCHM. We will work in the unitary gauge where only

the physical Higgs h is kept and the SM Goldstones are gauged away. We start with the calculation

of the gauge contribution to the Higgs potential, that follows closely the original calculation of

the electromagnetic contribution to the charged-pion mass [10]. Then we compute the fermion

contribution which, due to the large top-quark Yukawa coupling, is typically dominant.

2.1 Gauge contributions to the Higgs potential

Working in the limit g0 ! 0, the SM gauge contribution arising from loops of SU(2)
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is given by [5]
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where g is the gauge coupling and ⇧
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(p) is the two-point function of the SO(4) conserved current in

momentum space, ⇧
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a

J
a
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â
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in SO(5)/SO(4); for the precise definitions see Ref. [5]. In a large-N expansion, that we will assume
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where ⇢
n

and a
n

are vector resonances coming respectively in 6-plets and 4-plets of SO(4), and

F
⇢n,an are referred to as the decay-constants of these resonances.

The Higgs-dependent part of the potential Eq. (1) is expected to be finite. Indeed, according

to the operator product expansion, the form factor ⇧1(p) must drop at large p as ⇠ hOi/pd�2,

where O is the lowest dimension d operator of the strong sector responsible for the SO(5) ! SO(4)

breaking. In large-N
c

QCD, in the limit of massless quarks, we have hOi ⇠ hqq̄i2 and then d = 6,

with the left-right correlator ⇧
LR

(p) = ⇧
V

� ⇧
A

! hqq̄i2/p4 being the equivalent of our ⇧1(p).
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Gauge contribution:

where T aL , Y are respectively the generators of SU(2)L and hypercharge. Eq. (17) gives

S = 4πΠ′
1(0)ε

2 . (18)

The T parameter does not receive any contribution at tree level from the CFT due to the custodial

symmetry. Nevertheless, it can be induced at the quantum level due to top interactions. We will

discuss in section 4 the size of these contributions. Apart from S and T , there are other two

parameters constrained by LEP: W and Y , defined in [9]. They are however quite small in the

present model, since they arise from dimension-six operators and are thus suppressed by a factor

(g2f2
π/m2

ρ) compared to S and T .

2.1 Higgs potential and vacuum misalignment

A virtual exchange of elementary fields can transmit the explicit breaking of SO(5) from the ele-

mentary sector to the CFT and generate a potential for the PGB Higgs. The dominant contribution

comes at one-loop level from the elementary SU(2)L gauge bosons and top quark. This is given by

the Coleman-Weinberg potential

V (h) =
9

2

∫
d4p

(2π)4
log ΠW − (2Nc)

∫
d4p

(2π)4

[
log ΠbL

+ log
(
p2ΠtLΠtR − Π2

tLtR

) ]
, (19)

where Πi(p) are the self-energies of the corresponding SM fields in the background of h. These can

can be written as functions of the form factors of eq. (9), by using eq. (10):

ΠW = Π0 +
Π1

4
sin2 h

fπ
,

ΠtLtR = Mu
1 sin

h

fπ
,

ΠbL
= ΠtL = Πq

0 + Πq
1 cos

h

fπ
,

ΠtR = Πu
0 − Πu

1 cos
h

fπ
.

(20)

Apart from a constant piece, the potential of eq. (19) is finite since the form factors Π1 and M1 drop

with the momentum as |〈Φ〉|2/p2d, where Φ is the CFT operator of dimension d $ 1 responsible for

the SO(5) breaking. 2 This fast decrease with the momentum allows us to expand the logarithms

in eq. (19) and write the approximate formula 3

V (h) % α cos
h

fπ
− β sin2 h

fπ
, (21)

2In fact, in the 5D model the form factors drop exponentially with the momentum, corresponding to d → ∞.
3This approximate formula leaves out the top logarithmic contribution to the Higgs quartic coupling ∝

log(mt/mρ) ∼ log ε since it comes from a subleading term in the expansion. This contribution can be large if ε
is very small, and in that case it should be incorporated. For the qualitative discussion presented here, we will
neglect it. For the 5D calculation of the next section, however, we will take the full potential eq. (19).

8

1) Demand convergence of the integral:

We assume that in the TeV strong sector d > 4, meaning that the integral
R
d4p⇧1(p)/⇧0(p) is

convergent for ⇧0 ⇠ p2, assuring the finiteness of the Higgs-dependent part of the potential Eq. (1).

This convergence is equivalent to imposing a set of requirements on ⇧1(p), usually known as the

Weinberg sum-rules [9]. These are

lim
p

2!1
⇧1(p) = 0 , lim

p

2!1
p2⇧1(p) = 0 , (4)

that give two constraints to be fulfilled by the decay constants and masses in Eq. (3). Following

Ref. [10], we can now make the extra assumption of truncating the infinite sum in Eq. (3) to include

only the minimal number of resonances needed to satisfy the Weinberg sum-rules Eq. (4). One can

easily realize that only two are needed, ⇢1 ⌘ ⇢ and a1. Using the two constraints Eq. (4) we can

determine F
⇢

and F
a1 , and then calculate ⇧1 as a function of the two resonance masses 1:

⇧1(p) =
f 2m2

⇢

m2
a1

(p2 +m2
⇢

)(p2 +m2
a1
)
. (5)

Eq. (5) can now be used to obtain the gauge contribution to the Higgs potential Eq. (1). In an

expansion g2 ⌧ 1, we have

V (h) = ↵s2
h

+ �s4
h

+ · · · , (6)

where
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⇢
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and in the calculation of � the infrared divergence has been regularized with the W mass. Notice

that, being ↵ positive, the gauge contribution alone cannot induce electroweak symmetry breaking

(EWSB).

2.2 Top contributions in the MCHM5

We can now repeat the same procedure for the fermionic contributions to the Higgs potential,

concentrating on the one from the top quark, which is usually the most important one and generates

a Higgs potential with an EWSB minimum.

1This result is straightforward to obtain in the following alternative way. Requiring that ⇧1 has two poles
corresponding to the two massive resonances implies that the denominator of ⇧1 must be (p2 +m2

⇢)(p
2 +m2

a1
); the

numerator can easily be obtained by requiring ⇧1(0) = f2.

3

“Weinberg Sum Rules”
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2
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hh
2 + · · ·

Procedure:
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⇧1 = 2 [hJâJâi � hJaJai] = f2 + 2p2
1X

n

F 2
an

p2 +m2
an

� 2p2
1X

n

F 2
⇢n

p2 +m2
⇢n
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Result:
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convergent for ⇧0 ⇠ p2, assuring the finiteness of the Higgs-dependent part of the potential Eq. (1).

This convergence is equivalent to imposing a set of requirements on ⇧1(p), usually known as the
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and in the calculation of � the infrared divergence has been regularized with the W mass. Notice

that, being ↵ positive, the gauge contribution alone cannot induce electroweak symmetry breaking

(EWSB).

2.2 Top contributions in the MCHM5

We can now repeat the same procedure for the fermionic contributions to the Higgs potential,

concentrating on the one from the top quark, which is usually the most important one and generates

a Higgs potential with an EWSB minimum.

1This result is straightforward to obtain in the following alternative way. Requiring that ⇧1 has two poles
corresponding to the two massive resonances implies that the denominator of ⇧1 must be (p2 +m2

⇢)(p
2 +m2

a1
); the

numerator can easily be obtained by requiring ⇧1(0) = f2.
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Similar result as the electromagnetic contribution 
to the charged pion mass



Similarly, for the top contribution...

L = L
strong

+ L
SM

+ Jµ
strong

Wµ +O
strong

·  
SM

we must specify which rep of SO(5)

MCHM5 ⌘ Rep[O] = 5

Top contribution to the Higgs potential:

Encode the strong sector contribution 
to the top propagator 
in the h-background

V (h) = �2Nc

Z
d4p
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Triggers EWSB! 
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As in Ref. [5], we will consider models in which the SM fermions couple to the strong sector by

mixing with fermionic operators. These mixings are defined by the embedding of the SM fermions

into SO(5) spurion fields (see Appendix A). In this section we will work in the MCHM5 [6] where

the left-handed and right-handed top, t
L

and t
R

, are respectively embedded in two spurions in the

rL = 5 and rR = 5 representation of SO(5). The (non-local) e↵ective theory for the top quark, at

the quadratic order, can be written in momentum space as

Le↵ = t̄
L

6p
✓
⇧tL

0 (p) +
s2
h

2
⇧tL

1 (p)

◆
t
L

+ t̄
R

6p �⇧tR
0 (p) + c2

h

⇧tR
1 (p)

�
t
R

+

✓
s
h

c
hp
2
t̄
L

M t

1(p)tR + h.c.

◆
, (9)

where the form factors ⇧
tL,R

0,1 (p) and M t

1(p) encode the strong sector dynamics. The top contribution

to the Higgs potential is then [6] 2

V
top

(h) = �2N
c

Z
d4p

(2⇡)4
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|M t
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where N
c

= 3 and, as shown in Appendix A, the top-quark form factors can be written as a function

of the correlators of the fermionic operators decomposed in SO(4)-representations:

⇧tL
0 (p) = 1 + ⇧L

Q4
(p) , ⇧tL

1 (p) = ⇧L

Q1
(p)� ⇧L

Q4
(p) ,
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Q1
(p)� ⇧R

Q4
(p) ,

M t

1(p) = M
Q1(p)�M

Q4(p) . (11)

Notice that we have canonically normalized the kinetic term of the top in the limit in which the

top decouples from the strong sector. As in the case of the gauge correlators, ⇧L,R

Q4,1
and M

Q1,Q4 can

be written in a large-N expansion as a sum over infinite resonances. We have

⇧L

Q4
(p) =

X

n

|FL

Q

(n)
4

|2

p2 +m2

Q

(n)
4

, ⇧L

Q1
(p) =

X

n

|FL

Q

(n)
1

|2

p2 +m2

Q

(n)
1

, (12)

and similarly for ⇧R

Q4,1
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We denote with Q
(n)
4 and Q

(n)
1 the (color-triplet) vector-like fermonic resonances with the SO(4)

quantum numbers of 4 and 1 respectively. The dimensionful parameters FL,R

Q

(n)
i

are the equivalent

2We are working in a large-N expansion and neglect contributions coming from form factors involving four or
more top-quarks.
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Demanding again WSR:

where we have used the fact that the physical top mass is given by

m
t

=
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1(0)|q
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i . (20)

The convergence of Eq. (19) requires the Weinberg sum-rule lim
p!1 M t

1(p) = 0. This can be

achieved with just one resonance, ����
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, (21)

where Q represents here the lightest resonance, that can either be a 4 or a 1 of SO(4), since this

procedure does not depend on its quantum numbers. We then have
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that provides an upper bound for the resonance mass:
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To obtain a convergent result for the Higgs mass from the full top-quark contribution of Eq. (18),

we must impose the two pairs of Weinberg sum-rules, lim
p!1 pn⇧
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1 (p) = 0 (n = 0, 2), that require

at least two resonances, Q(1)
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where we have defined FL
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we must find at the LHC 
color vector-like fermions in the 4 or 1 rep. of SO(4):

If the 125 GeV Higgs is composite...

 EM charges:  5/3,2/3,-1/3
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L $∂ qL + t̄R $∂ tR

+ Tr
{

Q̄ ( $∂ − MQ)Q
}

+ ¯̃T ( $∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =
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B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L $∂ qL + t̄R $∂ tR

+ Tr
{

Q̄ ( $∂ − MQ)Q
}

+ ¯̃T ( $∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)

3

If this fermion is light, it can be double produced:
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Higgs couplings



Couplings dictated by symmetries (as in the QCD chiral Lagrangian)  
Giudice,Grojean,AP,Rattazzi 07
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small deviations on the h𝜸𝜸(gg)-coupling due to the 
Goldstone nature of the Higgs

Composite PGB Higgs couplings
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 = Decay-constant of the PGB Higgsf
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 Too premature to see deviations
for v/f~1/2!

from, e.g., Montull,Riva 
arXiv:1207.1716
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Figure 2: Predictions of a generic MCHM in the (ghff/g
SM
hff , ghWW /gSMhWW )-plane. The di↵erent curves corresponds

to di↵erent values of n, going downwards from n=0 to n = 5. The red part of the curves is for 0 < ⇠ < 0.25 and the
blue one for 0.25 < ⇠ < 1. The contours are the 68%, 95% and 99% CL for a 125 GeV Higgs as obtained in Ref. [15]
from the CMS data.

For m
Q4 ' 3 TeV, the Higgs mass Eq. (43) can be as small as 40 GeV. Larger values of m

h

imply

larger values of FL

Q1
, meaning thatm

h

⇠125 GeV can be obtained without light fermionic resonances

as we show in Figure 1. In this case, however, it is important to notice that extra contributions are

needed to reduce ↵ in order to have hs
h

i ⌧ 1.

3 Higgs couplings to SM fermions

In composite Higgs models the Higgs couplings to fermions generically deviate from their SM values

[12]. For the SO(5)/SO(4) model, the Higgs couplings to the SM fermions can be parametrized by

Eq. (27). At low-energies p ⌧ m
Qi and in the limit ✏ ⌧ 1, the Higgs couplings reduce, for the case

of a generic SM fermion f
L,R

, to

Le↵ ' f̄
L

M f

1 (0)fRs
1+2m
h

cn
h

+ h.c. ⌘ f̄
L

f
R

m
f

(h) + h.c . (44)

From this we can obtain the hff coupling [12]:

g
hff

gSM
hff

=
2m

W

(h)

gm
f

(h)

@m
f

(h)

@h
=

1 + 2m� (1 + 2m+ n)⇠p
1� ⇠

, (45)

where we have used that m
W

(h) = gs
h

/2 [5] and written the SM hff coupling as a function of the

physical W and fermion mass, gSM
hff

= gm
f

/(2m
W

). For m 6= 0, Eq. (45) gives deviations of order

one from the SM expectations, even in the limit ⇠ ! 1. For this reason, we will concentrate on the

m = 0 case. In Figure 2 we show, for m
h

' 125 GeV and assuming that all fermions couple in the
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hff , ghWW /gSMhWW )-plane. The di↵erent curves corresponds

to di↵erent values of n, going downwards from n=0 to n = 5. The red part of the curves is for 0 < ⇠ < 0.25 and the
blue one for 0.25 < ⇠ < 1. The contours are the 68%, 95% and 99% CL for a 125 GeV Higgs as obtained in Ref. [15]
from the CMS data.

For m
Q4 ' 3 TeV, the Higgs mass Eq. (43) can be as small as 40 GeV. Larger values of m

h

imply

larger values of FL

Q1
, meaning thatm

h

⇠125 GeV can be obtained without light fermionic resonances

as we show in Figure 1. In this case, however, it is important to notice that extra contributions are

needed to reduce ↵ in order to have hs
h

i ⌧ 1.

3 Higgs couplings to SM fermions

In composite Higgs models the Higgs couplings to fermions generically deviate from their SM values

[12]. For the SO(5)/SO(4) model, the Higgs couplings to the SM fermions can be parametrized by

Eq. (27). At low-energies p ⌧ m
Qi and in the limit ✏ ⌧ 1, the Higgs couplings reduce, for the case

of a generic SM fermion f
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, to
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From this we can obtain the hff coupling [12]:
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where we have used that m
W

(h) = gs
h

/2 [5] and written the SM hff coupling as a function of the

physical W and fermion mass, gSM
hff

= gm
f

/(2m
W

). For m 6= 0, Eq. (45) gives deviations of order

one from the SM expectations, even in the limit ⇠ ! 1. For this reason, we will concentrate on the

m = 0 case. In Figure 2 we show, for m
h

' 125 GeV and assuming that all fermions couple in the
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G H PGB

SO(5) SO(4) 4=(2,2)

SO(6) SO(5) 5=(2,2)+(1,1)

O(4)xO(2) 8=(2,2)+(2,2)

SO(7) SO(6) 6=(2,2)+(1,1)+(1,1)

G2 7=(1,3)+(2,2)

... ... ...

Other symmetry-breaking  patterns G→H:



G H PGB

SO(5) SO(4) 4=(2,2)

SO(6) SO(5) 5=(2,2)+(1,1)

O(4)xO(2) 8=(2,2)+(2,2)

SO(7) SO(6) 6=(2,2)+(1,1)+(1,1)

G2 7=(1,3)+(2,2)

... ... ...

One doublet
+ Singlet

 Gripaios,  AP, Riva, Serra

Other symmetry-breaking  patterns G→H:

SB of minimal TC:
Just by replacing 
SU(3)c by SU(2)c 
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Figure 6: The same as in Fig. 5, but with f = 1 TeV and with a comparison between two

scenarios for the top quark couplings: Case 1 (left panel) and Case 2 (right panel), as defined

at the end of section 2.

composite case. This is illustrated in Fig. 6, where we take f = 1 TeV. In particular, all

values of m
⌘

are viable for � . 10�2.

The correct DM relic density can be accommodated for m
⌘

lying a bit below or above the

Higgs resonance at m
h

/2 ⇠ 60 GeV, or for m
⌘

& 100 GeV, where the derivative interaction

⌘-⌘-h in Eq. (2.2) becomes of the right order to give the correct annihilation cross-section

above the WW threshold. Furthermore, for relatively large values of �, one enters in the

cancellation region described in section 3: the DM annihilation is suppressed and the relic

density can be accommodated even for very large values of the DM mass, up to m
⌘

' 500

GeV in Case 2 (right panel of Fig. 6). If the annihilation into tt̄ is stronger (Case 1, left panel

of Fig. 6), the allowed region closes earlier, at m
⌘

' 200 GeV.

As discussed above, composite models prefer � . m2
⌘

/f 2 (the region below the yellow

dot-dashed line) that is compatible with the Higgs-resonance region for � . 0.003, and with

the region dominated by the derivative coupling, for � . 0.02. On the contrary, the cancel-

lation region is slightly disfavoured theoretically, even though � larger by a factor of a few is

su�cient to realize the cancellation.

• m
h

= 145 GeV, f = 500 GeV: DM candidate with m
⌘

. 10� 20GeV and m
⌘

' 60 GeV

In case the LHC excess at 125 GeV were not confirmed, the Higgs boson might be heavier,

as long as it decays invisibly with a su�cient rate to avoid the LHC bound. In order to

illustrate this possibility, in Fig. 7 we choose a representative value m
h

= 145 GeV, assuming

for definiteness f = 500 GeV and Case 2 (the results are very similar in Case 1).
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If SO(6)→SO(5) breaking pattern:  Doublet h +Singlet η

Frigerio,AP,Riva,Urbano 12

• If extra parity 𝜼 → -𝜼 (e.g. if O(6)):  η can be Dark Matter !

• Mass of eta very model-dependent: depends on how the 
SO(2) ⊂ SO(6) is explicitly broken

New player in the game:
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10-3

10-2

10-1

100

mh @GeVD

l

mh = 125 GeV, f = 500 GeV, case 2

XENON100

LHC, 5 fb-1
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Figure 5: The contour ⌦
⌘

= ⌦
DM

(solid dark purple line) in the plane (m
⌘

,�), for m
h

= 125

GeV, f = 500 GeV, assuming Case 2 with c
b

= 1/2. The green shaded region is disfavoured

by XENON100, the region delimited by a blue line is favoured by DAMA/CoGeNT/CRESST-

II, and the red shaded region is disfavoured by the Higgs signal at the LHC. The solid light

purple/green/blue lines correspond to the same observables for maximal c
b

(a = b = 1 in

Eq. (2.9)). The dashed purple/green/blue/red lines correspond to the same observables in the

non-composite case, f = 1. Finally, the region below the yellow dot-dashed line corresponds

to the theoretical preferred region defined by Eq. (2.6).

coupling, therefore the relic density becomes independent from � and the purple lines in

Fig. 5 become vertical. For higher DM masses the derivative interaction becomes too strong

to accommodate the relic density (unless one enters in the “cancellation region”, at relatively

large values of �, which is however excluded by XENON100).

One may ask if the region of parameters that is allowed phenomenologically is also com-

patible with the theoretical expectations. Independently of the specific model, we expect from

Eq. (2.6) that m2
⌘

& �f 2. The region satisfying this relation lies below the yellow dot-dashed

line in Fig. 5, and it is compatible with the phenomenologically preferred region.

• m
h

= 125 GeV, f = 1 TeV: DM candidates with m
⌘

' 60 GeV and 100 . m
⌘

. 500 GeV

As the scale f increases, the composite interactions become weaker, and the bounds from

the LHC Higgs signal and from XENON100 become less stringent and closer to the non-
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purple solid line: proper relic density



Conclusions

•  Composite Higgs as a PGB a natural possibility
               (Higgs mass at the loop level)

Strong dynamics still possible at the TeV:

•   A 125 GeV composite Higgs implies either from 
     AdS/CFT,  Weinberg Sum rules, deconstructed models:

Fermionic colored vector-like resonances 
(either QEM=5/3,2/3,-1/3) with masses 

~ 700 GeV

Hope to see them at the LHC !

•  It gives clear predictions for the Higgs couplings 
    and their deviations from the SM


