Large N volume reduction of Minimal Walking Technicolor

Liam Keegan

April 2013

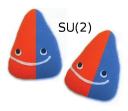
IFT UAM/CSIC, Universidad Autónoma de Madrid, Spain.

Margarita García Peréz, Antonio González-Arroyo, Masanori Okawa

(人間) ト く ヨ ト く ヨ ト

N Volume Indepence Lattice Field Theory Results Conclusion Cartoon Outline Motivation Large N

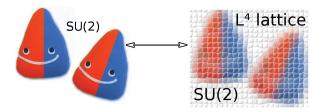
Cartoon Outline of Talk



<ロト <部ト < 注ト < 注ト

Large N Volume Indepence Lattice Field Theory Results Conclusion Cartoon Outline Motivation Large N

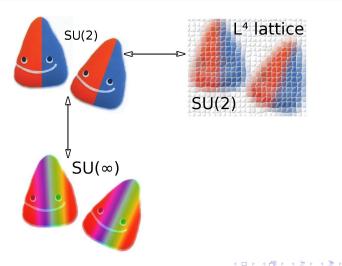
Cartoon Outline of Talk



<ロト <部ト < 注ト < 注ト

Large N Volume Indepence Lattice Field Theory Results Conclusion Cartoon Outline Motivation Large N

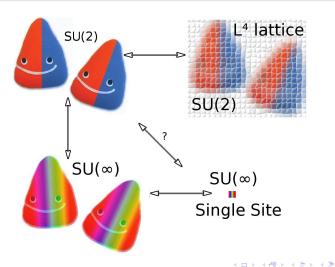
Cartoon Outline of Talk



э

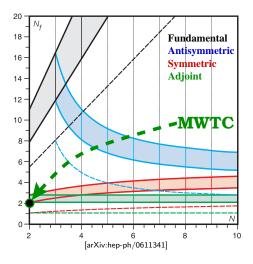
Large N Volume Indepence Lattice Field Theory Results Conclusion Cartoon Outline Motivation Large N

Cartoon Outline of Talk



Large N Volume Indepence Lattice Field Theory Results Conclusion Cartoon Outline Motivation Large N

Dynamical Electroweak Symmetry Breaking



- Dynamical EWSB or Technicolor Models
- In particular MWT: 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen [arXiv:hep-ph/0405209]

・ 同 ト ・ ヨ ト ・ ヨ

Cartoon Outline Motivation Large N

Mass Anomalous Dimension

Size of quark mass terms in the effective action depend on the value of the anomalous mass dimension γ .

- Need $\gamma \simeq 1$ to generate large enough quark masses.
- Important quantity to measure in TC models.

Cartoon Outline Motivation Large N

Why Large N?

- In perturbation theory, first two universal coefficients predict γ_* is independent of N, so we expect the large N value to be close to the N = 2 value.
- At large N the theory is (under certain conditions) volume independent, so the calculation can be done on a small lattice or even a single site.
- Interesting cross check of method, perturbation theory and large N volume reduction.

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj

Large–N Volume Independence

Eguchi-Kawai '82

In the limit $N_c \rightarrow \infty$, the properties of U(N_c) Yang–Mills theory on a periodic lattice are independent of the lattice size.

$$S_{YM} = S_{EK} \equiv N_c b \sum_{\mu < \nu} Tr \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c. \right)$$

where $b = \frac{1}{\lambda} = \frac{1}{g^2 N_c}$ is the inverse bare 't Hooft coupling, held fixed as $N_c \to \infty$.

イロト イポト イヨト イヨト

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj

Conditions

...but it turns out only

- for single-trace observables defined on the original lattice of side *L*, that are invariant under translations through multiples of the reduced lattice size *L*'
- and if the U(1)^d center symmetry is not spontaneously broken,
 i.e. on the lattice the trace of the Polyakov loop vanishes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj

Twisted Eguchi–Kawai

Gonzalez–Arroyo Okawa '83

Impose twisted boundary conditions, such that the classical minimum of the action preserves a Z_N^2 subgroup of the center symmetry.

$$S_{TEK} = N_c b \sum_{\mu < \nu} Tr \left(z_{\mu\nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c.
ight)$$

where
$$z_{\mu\nu} = exp\{2\pi ik/\sqrt{N}\}$$

• Original choice is k = 1

同 ト イ ヨ ト イ ヨ ト

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj

Twisted Eguchi–Kawai

- Original choice k = 1 seen to break center-symmetry at intermediate couplings for $N \gtrsim 100$
- But symmetry can be restored by scaling the twist k with N

Gonzalez-Arroyo Okawa [arXiv:1005.1981]

(日) (同) (三) (三)

Eguchi-Kawai Twisted Eguchi-Kawai QCDadj

QCDadj

Kotvul Unsal Yaffe '07

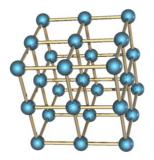
Add (massless or light) adjoint fermions with periodic boundary conditions

- Preserves center symmetry down to a single site
- Works in perturbation theory (for $am \lesssim \frac{1}{N}$)
- And in lattice simulations (even for $\mathit{am} \lesssim 1)$

(日) (同) (日) (日) (日)

Lattice Field Theory Continuum Limit Twisted Reduction Mode Number Method

Lattice Field Theory



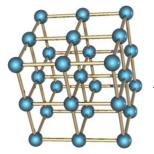
Formulate field theory on a discrete set of space-time points:

- Physical volume $L^4 = (\hat{L}a)^4$
- \hat{L}^4 points, lattice spacing a
- Quarks live on sites
- Gauge fields live on links between sites
- Simulate on a big computer

<ロト <部 > < 注 > < 注 >

Lattice Field Theory Continuum Limit Twisted Reduction Mode Number Method

Continuum Limit



Lattice provides regularisation:

- UV cut-off: 1/a
- IR cut-off: 1/L

To recover continuum theory:

- Take $1/L \rightarrow 0$ limit $(\hat{L} \rightarrow \infty)$
- Take $a \rightarrow 0$ limit $(b \rightarrow \infty)$

(日) (同) (三) (三)

Lattice Field Theory Continuum Limit **Twisted Reduction** Mode Number Method

Twisted Reduction

A single site lattice:

- Single lattice site instead of \hat{L}^4 points
- Equivalent to $L^4 = (\sqrt{N}a)^4$ lattice
- Can substitute \sqrt{N} with \hat{L}
- Then everything else is the same

・ 同 ト ・ ヨ ト ・ ヨ

Lattice Field Theory Continuum Limit Twisted Reduction Mode Number Method

Mode Number Method

At small eigenvalues, at leading order,

Spectral density of the Dirac Operator

 $\rho(\omega) \propto \mu^{\frac{4\gamma_*}{1+\gamma_*}} \omega^{\frac{3-\gamma_*}{1+\gamma_*}} + \dots$

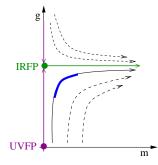
- Integral of this is the mode number, which is just counting the number of eigenvalues of the Dirac Operator on the lattice.
- Fitting this to the above form can give a precise value for γ , as done recently for MWT by Agostino Patella.

```
Patella [arXiv:1204.4432]
```

Lattice Field Theory Continuum Limit Twisted Reduction Mode Number Method

Mode Number Fit Range

RG flows in mass-deformed CFT:



- Flow from UV (high eigenvalues) to IR (low eigenvalues)
- Finite mass drives us away from FP in the IR
- Interested in intermediate blue region

•
$$\frac{1}{\sqrt{N}} \ll m \ll \overline{\Omega}_{IR} < \Omega < \overline{\Omega}_{UV} \ll \frac{1}{a}$$

Simulation Details Reduction Finite Volume Effects Mode Number Fit

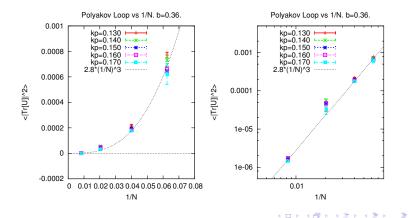
Simulation Details

- Simulate large N version of MWT.
 - SU(N) gauge theory with 2 light adjoint Dirac fermions with periodic boundary conditions.
- Use single site 1^4 lattices with N up to 289.
 - $V_{eff} = N^2$, so equivalent to $L^4 = 17^4$.
- Measure lowest 1000 eigenvalues of the Dirac operator Q^2 .
- Choose bare lattice coupling $b = 1/\lambda = 0.35, 0.36$.
 - Need to stay in weak coupling phase.
 - But want fairly strong coupling to minimise 1/N effects.

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Polyakov Loop

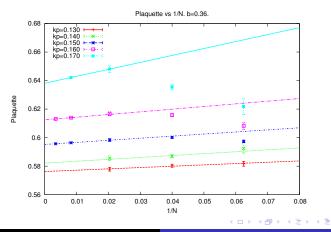
Polyakov loop is zero up to 1/N corrections, so reduction holds.



Simulation Details Reduction Finite Volume Effects Mode Number Fit

Plaquette vs 1/N

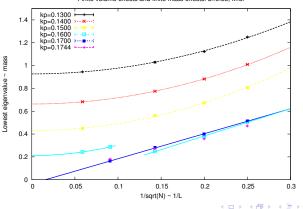
Plaquette: see larger finite-N effects for lighter masses.



Simulation Details Reduction Finite Volume Effects Mode Number Fit

Lowest Dirac Eigenvalue vs 1/N

Lowest eigenvalue has two distinct regimes.



Finite volume effects and finite mass effects. b=0.36, k=3.

Liam Keegan Large N volume reduction of Minimal Walking Technicolor

- (E

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Large volume vs small volume

- Large volume regime (p-regime)
 - $mL\gg 1$
 - $\lambda = m + c/N$
 - Can perform mode number fit
- Small volume regime (*e*-regime)
 - $mL \ll 1$
 - $\lambda \sim 1/L$
 - Comparison to chiral random matrix theory?
 - Also mode number fit if affected eigenvalues are excluded from the fit?

・ロト ・同ト ・ヨト ・ヨト

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Method

Fit data to the function

$$a^{-4}\overline{
u}(\Omega)\simeq a^{-4}\overline{
u}_0+A\left[(a\Omega)^2-(am)^2
ight]^{rac{2}{1+\gamma_*}}$$

in some intermediate range $a\Omega_L < a\Omega < a\Omega_H$ where

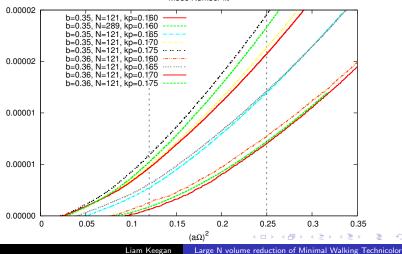
- a⁻⁴ν(Ω) is the number of eigenvalues of Q² below Ω² divided by the volume
- $a^{-4}\overline{\nu}_0$ is a fitted parameter (contribution of small excluded eigenvalues, $\propto M_{PS}^4$)
- am is a fitted parameter (physical mass)
- A is a fitted parameter

Patella [arXiv:1204.4432]

< ロ > < 同 > < 回 > < 回 >

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Mode Number Data

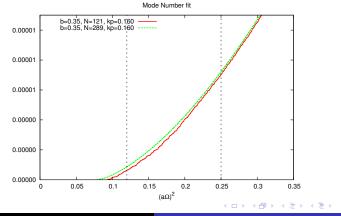


Mode Number fit

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Mode Number Example Fit b = 0.35, $\kappa = 0.16$

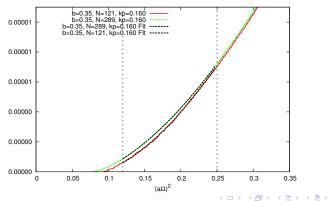
 $N = 289: A = 1.11 \times 10^{-4}, am = 0.271, \gamma = 0.267$ $N = 121: A = 1.25 \times 10^{-4}, am = 0.296, \gamma = 0.255$



Simulation Details Reduction Finite Volume Effects Mode Number Fit

Mode Number Example Fit b = 0.35, $\kappa = 0.16$

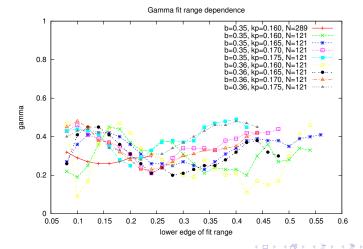
 $N = 289: A = 1.11 \times 10^{-4}, am = 0.271, \gamma = 0.267$ $N = 121: A = 1.25 \times 10^{-4}, am = 0.296, \gamma = 0.255$



Mode Number fit

Simulation Details Reduction Finite Volume Effects Mode Number Fit

Mode Number Fit Range [preliminary]



Conclusion and Future Work

- Promising initial results.
 - Volume reduction seems to work
 - Finite volume and finite mass effects understood
 - Preliminary results give $\gamma \simeq 0.2 0.4$
- Would be very interesting to compare with $n_f = 1$
- Also need to investigate fully the systematics of the fitting procedure.
- And want to try different twist and couplings, larger N, lighter masses.

blah blah

Liam Keegan Large N volume reduction of Minimal Walking Technicolor

<ロ> <同> <同> < 同> < 同>

æ