# Large N volume reduction of Minimal Walking Technicolor 

Liam Keegan

April 2013

IFT UAM/CSIC, Universidad Autónoma de Madrid, Spain.
Margarita García Peréz, Antonio González-Arroyo, Masanori Okawa

Introduction

## Cartoon Outline of Talk



## Dynamical Electroweak Symmetry Breaking



- Dynamical EWSB or Technicolor Models
- In particular MWT: 2 dirac fermions transforming under the adjoint representation of SU(2)

Saninno, Tuominen
[arXiv:hep-ph/0405209]

## Mass Anomalous Dimension

Size of quark mass terms in the effective action depend on the value of the anomalous mass dimension $\gamma$.

## Quark Masses

$$
\frac{\langle\bar{\Psi} \Psi\rangle_{E T C}}{\Lambda_{E T C}^{2}} \bar{\psi} \psi
$$

## Power Enhancement

$$
\langle\bar{\Psi} \Psi\rangle_{E T C}=\left(\frac{\Lambda_{E T C}}{\Lambda_{T C}}\right)^{\gamma}\langle\bar{\Psi} \Psi\rangle_{T C}
$$

- Need $\gamma \simeq 1$ to generate large enough quark masses.
- Important quantity to measure in TC models.


## Why Large N?

- In perturbation theory, first two universal coefficients predict $\gamma_{*}$ is independent of $N$, so we expect the large N value to be close to the $N=2$ value.
- At large N the theory is (under certain conditions) volume independent, so the calculation can be done on a small lattice or even a single site.
- Interesting cross check of method, perturbation theory and large N volume reduction.


## Large-N Volume Independence

## Eguchi-Kawai '82

In the limit $N_{c} \rightarrow \infty$, the properties of $\mathrm{U}\left(N_{c}\right)$ Yang-Mills theory on a periodic lattice are independent of the lattice size.

$$
S_{Y M}=S_{E K} \equiv N_{c} b \sum_{\mu<\nu} \operatorname{Tr}\left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}+\text { h.c. }\right)
$$

where $b=\frac{1}{\lambda}=\frac{1}{g^{2} N_{c}}$ is the inverse bare 't Hooft coupling, held fixed as $N_{c} \rightarrow \infty$.

## Conditions

...but it turns out only

- for single-trace observables defined on the original lattice of side $L$, that are invariant under translations through multiples of the reduced lattice size $L^{\prime}$
- and if the $U(1)^{d}$ center symmetry is not spontaneously broken, i.e. on the lattice the trace of the Polyakov loop vanishes.


## Twisted Eguchi-Kawai

## Gonzalez-Arroyo Okawa '83

Impose twisted boundary conditions, such that the classical minimum of the action preserves a $Z_{N}^{2}$ subgroup of the center symmetry.

$$
\begin{aligned}
S_{T E K}= & N_{c} b \sum_{\mu<\nu} \operatorname{Tr}\left(z_{\mu \nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger}+\text { h.c. }\right) \\
& \text { where } z_{\mu \nu}=\exp \{2 \pi i k / \sqrt{N}\}
\end{aligned}
$$

- Original choice is $k=1$


## Twisted Eguchi-Kawai

- Original choice $k=1$ seen to break center-symmetry at intermediate couplings for $N \gtrsim 100$
- But symmetry can be restored by scaling the twist $k$ with $N$

Gonzalez-Arroyo Okawa [arXiv:1005.1981]

## QCDadj

## Kotvul Unsal Yaffe '07

Add (massless or light) adjoint fermions with periodic boundary conditions

- Preserves center symmetry down to a single site
- Works in perturbation theory (for $a m \lesssim \frac{1}{N}$ )
- And in lattice simulations (even for am $\lesssim 1$ )


## Lattice Field Theory



Formulate field theory on a discrete set of space-time points:

- Physical volume $L^{4}=(\hat{L} a)^{4}$
- $\hat{L}^{4}$ points, lattice spacing a
- Quarks live on sites
- Gauge fields live on links between sites
- Simulate on a big computer


## Continuum Limit

Lattice provides regularisation:


- UV cut-off: $1 / a$
- IR cut-off: $1 / L$

To recover continuum theory:

- Take $1 / L \rightarrow 0$ limit $(\hat{L} \rightarrow \infty)$
- Take $a \rightarrow 0$ limit $(b \rightarrow \infty)$


## Twisted Reduction

A single site lattice:

- Single lattice site instead of $\hat{L}^{4}$ points
- Equivalent to $L^{4}=(\sqrt{N} a)^{4}$ lattice
- Can substitute $\sqrt{N}$ with $\hat{L}$
- Then everything else is the same


## Mode Number Method

At small eigenvalues, at leading order,

## Spectral density of the Dirac Operator

$$
\rho(\omega) \propto \mu^{\frac{4 \gamma_{*}}{1+\gamma_{*}}} \omega^{\frac{3-\gamma_{*}}{1+\gamma_{*}}}+\ldots
$$

- Integral of this is the mode number, which is just counting the number of eigenvalues of the Dirac Operator on the lattice.
- Fitting this to the above form can give a precise value for $\gamma$, as done recently for MWT by Agostino Patella.
Patella [arXiv:1204.4432]


## Mode Number Fit Range

RG flows in mass-deformed CFT:


- Flow from UV (high eigenvalues) to IR (low eigenvalues)
- Finite mass drives us away from FP in the IR
- Interested in intermediate blue region
- $\frac{1}{\sqrt{\mathrm{~N}}} \ll m \ll \bar{\Omega}_{I R}<\Omega<\bar{\Omega}_{U V} \ll \frac{1}{a}$


## Simulation Details

- Simulate large N version of MWT.
- $\operatorname{SU}(\mathrm{N})$ gauge theory with 2 light adjoint Dirac fermions with periodic boundary conditions.
- Use single site $1^{4}$ lattices with $N$ up to 289 .
- $V_{\text {eff }}=N^{2}$, so equivalent to $L^{4}=17^{4}$.
- Measure lowest 1000 eigenvalues of the Dirac operator $Q^{2}$.
- Choose bare lattice coupling $b=1 / \lambda=0.35,0.36$.
- Need to stay in weak coupling phase.
- But want fairly strong coupling to minimise $1 / N$ effects.


## Polyakov Loop

## Polyakov loop is zero up to $1 / \mathrm{N}$ corrections, so reduction holds.



Polyakov Loop vs $1 / \mathrm{N} . \mathrm{b}=0.36$.


Introduction

## Plaquette vs 1/N

Plaquette: see larger finite-N effects for lighter masses.

Plaquette vs $1 / \mathrm{N} . \mathrm{b}=0.36$.


## Lowest Dirac Eigenvalue vs 1/N

## Lowest eigenvalue has two distinct regimes.

Finite volume effects and finite mass effects. $\mathrm{b}=0.36, \mathrm{k}=3$.


## Large volume vs small volume

- Large volume regime (p-regime)
- $m L \gg 1$
- $\lambda=m+c / N$
- Can perform mode number fit
- Small volume regime ( $\epsilon$-regime)
- $m L \ll 1$
- $\lambda \sim 1 / L$
- Comparison to chiral random matrix theory?
- Also mode number fit if affected eigenvalues are excluded from the fit?


## Method

## Fit data to the function

$$
a^{-4} \bar{\nu}(\Omega) \simeq a^{-4} \bar{\nu}_{0}+A\left[(a \Omega)^{2}-(a m)^{2}\right]^{\frac{2}{1+\gamma_{*}}}
$$

in some intermediate range $a \Omega_{L}<a \Omega<a \Omega_{H}$ where

- $a^{-4} \bar{\nu}(\Omega)$ is the number of eigenvalues of $Q^{2}$ below $\Omega^{2}$ divided by the volume
- $a^{-4} \bar{\nu}_{0}$ is a fitted parameter (contribution of small excluded eigenvalues, $\propto M_{P S}^{4}$ )
- am is a fitted parameter (physical mass)
- $A$ is a fitted parameter

Patella [arXiv:1204.4432]

Introduction

Mode Number Fit

## Mode Number Data

Mode Number fit


Introduction

## Mode Number Example Fit $b=0.35, \kappa=0.16$

$$
\begin{aligned}
& N=289: A=1.11 \times 10^{-4}, a m=0.271, \gamma=0.267 \\
& N=121: A=1.25 \times 10^{-4}, a m=0.296, \gamma=0.255
\end{aligned}
$$

Mode Number fit


Introduction

## Mode Number Example Fit $b=0.35, \kappa=0.16$

$$
\begin{aligned}
& N=289: A=1.11 \times 10^{-4}, a m=0.271, \gamma=0.267 \\
& N=121: A=1.25 \times 10^{-4}, a m=0.296, \gamma=0.255
\end{aligned}
$$

Mode Number fit


Introduction

## Mode Number Fit Range [preliminary]

Gamma fit range dependence


## Conclusion and Future Work

- Promising initial results.
- Volume reduction seems to work
- Finite volume and finite mass effects understood
- Preliminary results give $\gamma \simeq 0.2-0.4$
- Would be very interesting to compare with $n_{f}=1$
- Also need to investigate fully the systematics of the fitting procedure.
- And want to try different twist and couplings, larger N, lighter masses.


## Extra Slides

## blah blah

