
Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice

Ari Hietanen – CP³-Origins with Claudio Pica, Francesco Sannino and Ulrik Søndergaard

April 24 2013

Particle Physics & Cosmology

(日) (同) (三) (三)

э

Ari Hietanen

Introduction

- The technicolor theories provide natural dark matter (DM) candidates.
- The DM candidate is the lightest technibaryon or other composite state protected by symmetry. S. Nussinov, Phys. Lett. B 165, 55 (1985). and R. Foadi, M. T. Frandsen and F. Sannino, arXiv:0812.3406 [hep-ph].
- This scenario naturally leads to asymmetric DM, but also symmetric DM is possible. A. Belyaev, M. T. Frandsen, S. Sarkar and F. Sannino, arXiv:1007.4839 [hep-ph].
- The DM particle can also be light if it is a pseudo Goldstone boson, e.g. iTIMP. M. T. Frandsen and F. Sannino, arXiv:0911.1570 [hep-ph]

<ロ> (日) (日) (日) (日) (日)

Orthogonal technicolor

- SO(4)-gauge theory with two vector representation fermions
- The theory has a possibly light dark matter candidate called ITIMP¹ (M. T. Frandsen and F. Sannino, arXiv:0911.1570)
- For two Dirac fermions in a real representation the chiral symmetry breaking pattern is: $SU(4) \rightarrow SO(4)$. This gives nine Goldstone bosons, of which three are eaten by SM gauge bosons.

Ari Hietanen

¹Isotriplet Technicolor Interactive Massive Particle $\Box \rightarrow \langle \Box \rangle \wedge \langle \Xi \rangle \wedge \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

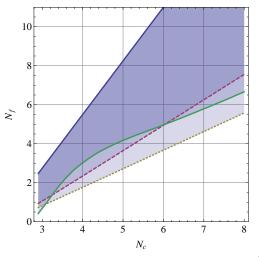
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

 The enlarged chiral symmetry follows from the property of Dirac operator

$$(\not\!\!D+m)C\gamma^5=C\gamma^5(\not\!\!D+m)^*,$$

where $C = i\gamma^0\gamma^2$ is the charge conjugation operator.

- Six additional Goldstone bosons with technibaryon charge form triplets.
- The ITIMP is the neutral isospin zero component of weak complex triplet


 T^+, T^0, T^-

possessing a technibaryon number.

Ari Hietanen

- Compared to MWT, the real gauge group removes the fractionally charged states composed of a techni quark and techni gluon, which would be present in SU(N) theory with adjoint fermions.
- No Witten anomaly.
- SO(4) is semi simple SO(4)= SU(2)⊗SO(3) and it has a non-trivial center Z₂.
- The two-loop β-function of the theory does not have an infrared fixed point. Maybe a good theory for walking.

< ロ > < 同 > < 三 > < 三

Conformal window in two, three and four-loops for SO(N) theories with fundamental fermions.

<ロ> <同> <同> < 回> < 回>

2

Ari Hietanen

3

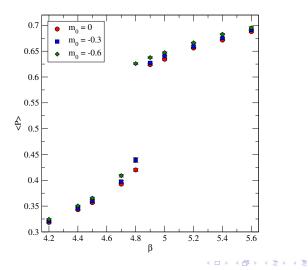
Lattice study

Based on AH, C. Pica, F. Sannino and U. I. Sondergaard, arXiv:1211.5021 [hep-lat]. Goals of the project:

1 Map out the phase diagram in (β, m_0) -plane

2 Confirm that the chiral symmetry is broken.

- 3 Find out the chiral symmetry breaking pattern.
- 4 Calculate the running of the coupling. Is theory running, walking or conformal?
- 5 Calculate properties of dark matter: Form factors, etc.


Ari Hietanen

Lattice phase diagram

- We map out the phase diagram in (β, m_0) -plane.
- Our main aim is to find the zero fermion line as well as the strong coupling bulk phase transition line.
- The bulk phase transition is located by a discontinuity in Plaquette expectation value.
- The initial scan is done with a small volume $L = 16 \times 8^3$
- Bulk phase transition in SO(*N*)-gauge theories in a β ⇒ large lattices required.

Ari Hietanen

Bulk phase transition

Ari Hietanen

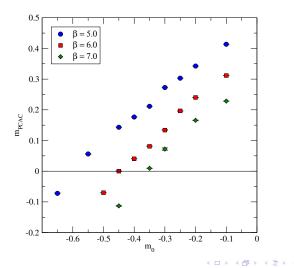
PCAC quark mass

- We use Partial Conversation of Axial Current to determine the quark mass
- On lattice:

$$m_{\rm PCAC} = \lim_{t\to\infty} \frac{1}{2} \frac{\partial_t V_{\rm PS}}{V_{\rm PP}},$$

where the currents are

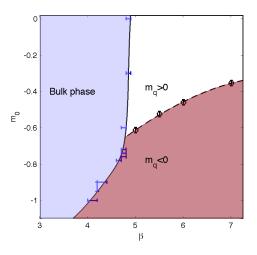
$$egin{aligned} V_{\mathrm{PS}}(x_0) &= a^3 \sum_{x_1,x_2,x_3} \left\langle ar{u}(x)\gamma_5 d(x)ar{u}(0)\gamma_5 d(0)
ight
angle \ V_{\mathrm{PP}}(x_0) &= a^3 \sum_{x_1,x_2,x_3} \left\langle ar{u}(x)\gamma_0 d\gamma_5(x)ar{u}(0)\gamma_0\gamma_5 d(0)
ight
angle. \end{aligned}$$


<ロ> <同> <同> < 回> < 回>

Ξ.

Ari Hietanen

æ


Examples of zero mass extrapolation

Ari Hietanen

-≣->

Lattice phase diagram

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-≣⇒

Ari Hietanen

Meson spectroscopy

- For studies of meson spectroscopy we picked the bare coupling $\beta = 7.0$
- Simulation were performed with lattices of $V = 64 \times 12^3$ and $V = 64 \times 24^3$

イロト イポト イヨト イヨト

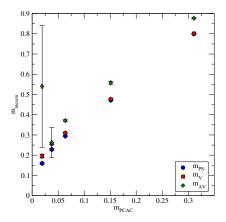
э

• The lattice $V = 64 \times 12^3$ still too small for spectroscopy.

Ari Hietanen

₽.

< ≣⇒


<ロ> <同> <同> <同> < 同>

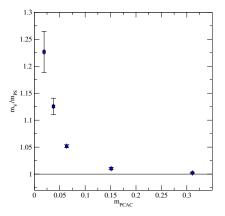
Finite volume effects

Ari Hietanen

Meson masses

<ロ> <同> <同> <同> < 同>

< ≣⇒


ъ.

Ari Hietanen

-≣->

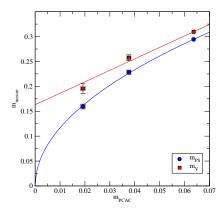
< 🗗 >

Ratio of vector and pseudoscalar meson

Ari Hietanen

Different fits for chiral limit

meson fit	fit function	best parameter	$\chi^2/{ m dof}$
ps chiral	$a\sqrt{m}$	a = 1.167(6)	0.43/2
ps conformal	am	a = 4.69(3)	364/2
ps alt. 1	a + bm	$egin{array}{l} a=0.111(6)\ b=2.9(1) \end{array}$	6.4/1
ps alt. 2	$a + b\sqrt{m}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	0.41/1
vector chiral	a + bm	a = 0.16(1) b = 2.3(2)	3.3/1
vector conformal	am	a = 4.91(3)	273/2
vector alt. 1	$a\sqrt{m}$	a = 1.231(6)	18/2
vector alt. 2	$a + b\sqrt{m}$	a = 0.07(2) b = 0.96(7)	0.69/1


▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Ari Hietanen

・ロト ・回ト ・ヨト ・ヨト

ъ.

Chiral fits

Ari Hietanen

Conclusions

- Orthogonal Technicolor is a viable technicolor theory candidate.
- We mapped out the phase diagram in (β, m_0) -plane.
- We found behavior consistent with chiral symmetry breaking.
- Finite volume effects might still be a problem.
- To do: Measure scalar mass, exited states, and form factors.

イロト イポト イヨト イヨト