Stable D7 embeddings in walking backgrounds

Lilia Anguelova

(Perimeter Institute for Theoretical Physics)

in progress

(with P. Suranyi, L.C.R. Wijewardhana)

also relevant: arXiv:1006.3570 [hep-th]; arXiv:1105.4185 [hep-th]

arXiv:1203.1968 [hep-th]

Goal:

To study Dynamical Mass Generation

Possible pheno application:

Dynamical electroweak symmetry breaking

(Strongly-coupled gauge dynamics \rightarrow composite Higgs)

Advantage: natural (no hierarchy problem) (compared to fund. Higgs)

Disadvantage: Strong coupling is a challenge for standard QFT methods!

Gauge/Gravity Duality

(AdS/CFT correspondence)

New non-perturbative method:

Some strongly coupled Quantum Field Theories have an equivalent (called dual) description in terms of weakly coupled Gravity Backgrounds in a different number of dimensions.

Gauge/Gravity Duality

(AdS/CFT correspondence)

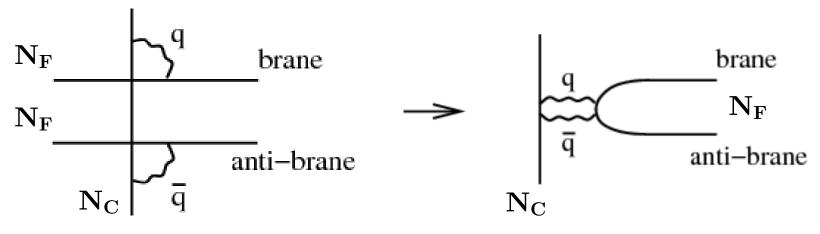
Basic ingredients of Gravity Dual:

- supersymmetric brane sources (color degrees of freedom)
- non-supersymmetric probe branes (flavour degrees of freedom)
 - ⇒ Can have tachyonic mode(s).
 How can we remove it (them)?

Plan

- Gravity Duals of Chiral Symmetry Breaking (a la Sakai-Sugimoto)
- Walking Technicolor
 - Basic Ingredients
 - Instability in flavour (probe D7) sector
 - Stabilizing the D7 embedding
- Summary and Outlook

Gravity Duals of Chiral SB


Need chiral fermions \rightarrow consider intersecting D-branes

Shorthand notation:

$$\equiv$$

Chiral symmetry breaking:

[Sakai and Sugimoto (2004)]

both chiralities

chiral sym. breaking: $\langle \bar{q}q \rangle \neq 0$

Gravity Duals of Chiral SB

Intersecting branes:

In practice: Very difficult to find full gravitational solution for intersecting D-branes!

So often:

Use approximation: Treat flavour branes as probes in background sourced by color branes.

(i.e.,
$$\mathbf{N_F} \ll \mathbf{N_C}$$
)

 \Rightarrow QFT: In different universality class compared to $N_F \sim N_C$ models.

Need two ingredients:

- Background sourced by a stack of N_{TC} branes
- U-shaped embedding of N_{TF} probe branes in above background

Chiral symmetry breaking:

U-shape: $SU(N_{TF})_L \times SU(N_{TF})_R \rightarrow SU(N_{TF})_D$

Electroweak symmetry breaking:

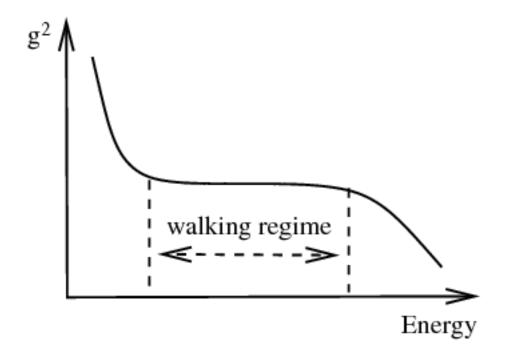
Induced via $[SU(2) \times U(1)]_{EW} \subset SU(N_{TF})_L \times SU(N_{TF})_R$

Technicolor background:

[Nunez, Papadimitriou and Piai (2008)]

Solution of IIB Supergravity equations of motion, due to N_{TC} D5 branes wrapping an S^2 .

[10 dim. metric and RR 3-form flux]

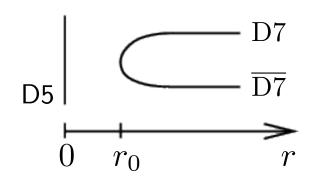

- Deformation of famous Maldacena-Nunez solution
- BUT: dilaton is constant

[Note: Dilaton is not gauge coupling!]

Technicolor background:

Solution depends on two parameters.

In certain parameter range: walking gauge coupling



Techniflavour probe branes:

[LA (2010)]

D7 – anti-D7 probes in above D5 background

There is a U-shape embedding:

Meson spectrum:

- Vector mesons (arise from fluctuations of worldvolume field)
- Scalar mesons (arise from fluctuations of D7 $\overline{D7}$ embedding)

Since D7 - $\overline{D7}$ embedding is not supersymmetric, there is no guarantee that $m^2>0$ for all states.

→ To show perturbative stability, have to compute the spectrum explicitly.

Vector mesons:

[LA, Suranyi and Wijewardhana (2011)]

Computed: $m_{V_n}^2$, $m_{A_n}^2 > 0$ at every level n

$$\Rightarrow \qquad S = 4\pi \sum_{n=1}^{\infty} \left(\frac{g_{V_n}^2}{m_{V_n}^4} - \frac{g_{A_n}^2}{m_{A_n}^4} \right), \qquad \begin{array}{c} V \text{ - vector} \\ A \text{ - axial-vector} \end{array}$$

 g_n - decay constants

Found: S > 0 and small!

Scalar mesons:

[LA, Suranyi and Wijewardhana (2012)]

[Clark, Love and ter Veldhuis (2012)]

Arise from fluctuations of D7 - $\overline{D7}$ embedding.

2 embedding functions \Rightarrow 2 types of scalar mesons, φ and θ

Found: • $m_{\theta_n}^2 > 0$ at every level n

ullet lowest arphi-mode has $m_{arphi}^2 < 0$!

Scalar mesons:

[LA, Suranyi and Wijewardhana (2013 - in progress...)]

Two ways to stabilize the D7 - $\overline{D7}$ embedding:

- Turn on world-volume flux

$$F_{r\, ilde{\omega}_3}=const$$
 , $ilde{\omega}_3=d\psi+\cos ilde{ heta}d ilde{arphi}$,
$$(\psi, ilde{ heta}, ilde{arphi}):S^3 ext{ wrapped by } ext{D7}$$

$$ightarrow$$
 $\theta(r)=rac{\pi}{2}$ - same $\ \ ,\ \ arphi(r)$ - changed

Scalar mesons:

[LA, Suranyi and Wijewardhana (2013 - in progress...)]

Two ways to stabilize the D7 - $\overline{D7}$ embedding:

- Modify embedding functions

Both functions $\theta(r)$ and $\varphi(r)$ - nontrivial,

No world-volume flux

in progress...

Summary

Considered a model of dynamical mass generation.

Gravitational dual contains non-susy D7 probe branes

⇒ instabilities could exist

Found:

- no tachyons in vector meson spectrum
- a tachyonic mode in scalar spectrum!
- tachyon mode can be removed by:
 - world-volume flux
 - modified embedding functions

Thank you!