The gradient flow running coupling scheme

Dániel Nógrádi

in collaboration with

Zoltan Fodor, Kieran Holland

Julius Kuti, Chik Him Wong

Outline

- Yang-Mills gradient flow
- Finite volume calculation
- Running coupling in finite volume, step scaling
- Continuum results for $S U(3)$ fundamental $N_{f}=4$
- Preliminary results for $S U(3)$ fundamental $N_{f}=8$

Yang-Mills gradient flow

Luscher considered the following flow in the space of gauge fields

$$
\dot{A}_{\mu}=-\frac{\delta S_{Y M}}{\delta A_{\mu}}=D_{\nu} F_{\nu \mu}
$$

$A_{\mu}\left(t, x_{1}, x_{2}, x_{3}, x_{4}\right)$ where t is auxiliary "time", dimension length ${ }^{2}$
$A_{\mu}(t)$ is uniquely calculable from $A_{\mu}(0)$, smoothing operation:
Zeroth order in perturbation theory $A_{\mu}(t, p)=e^{-p^{2} t} A_{\mu}(0, p)$

Yang-Mills gradient flow

Consider $\operatorname{SU}(N)$ gauge theory $+N_{f}$ fermions in repr R
Path integral usually:

$$
\langle\mathcal{O}(A)\rangle=\frac{\int D A d \psi d \bar{\psi} \mathcal{O}(A) e^{-S(A, \psi)}}{\int D A d \psi d \bar{\psi} e^{-S(A, \psi)}}
$$

Suggestion of Luscher: path integral over $A_{\mu}(0, x)$ but observables on $A_{\mu}(t, x)$ for $t>0$, flow becomes part of the observable:

$$
\left\langle\mathcal{O}_{t}(A)\right\rangle=\frac{\int D A(0) d \psi d \bar{\psi} \mathcal{O}(A(t)) e^{-S(A(0), \psi)}}{\int D A(0) d \psi d \bar{\psi} e^{-S(A(0), \psi)}}
$$

Yang-Mills gradient flow

Why?

Gradient flow is smoothing/averaging/blocking: $\langle\mathcal{O}(x) \mathcal{O}(y)\rangle$ correlation function, $x \rightarrow y$ singularities might be tamed?

Let's try with the simplest composite operator first: $E=-\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}$
Observable $E(t)=-\frac{1}{4} \operatorname{Tr} F_{\mu \nu}(t) F_{\mu \nu}(t)$

On the lattice: plaquette from $U_{\mu}(t)$ smoothed fields

Yang-Mills gradient flow

Calculate $\langle E(t)\rangle$ in dimensional regularization in $\overline{\mathrm{MS}}$ scheme $D=4-2 \varepsilon$.

Remember: path integral over $A_{\mu}(t=0)$, observable at $A_{\mu}(t>0)$.

$$
\langle E(t)\rangle=\frac{g_{0}^{2}}{2}\left\langle\partial_{\mu} A_{\nu}^{a}(t) \partial_{\mu} A_{\nu}^{a}(t)-\partial_{\mu} A_{\nu}^{a}(t) \partial_{\nu} A_{\mu}^{a}(t)\right\rangle+\cdots
$$

In momentum space, lowest order: $A_{\mu}(t, p)=e^{-t p^{2}} A_{\mu}(0, p)$

The Yang-Mills gradient flow

E is quadratic in A_{μ} : free propagator, two factors of $e^{-t p^{2}}$

Gauge sum: factor of $N^{2}-1$.

$$
\langle E(t)\rangle=\frac{g_{0}^{2}\left(N^{2}-1\right)}{2} \int \frac{d^{D} p}{(2 \pi)^{D}} e^{-2 t p^{2}}\left(p^{2} \delta_{\mu \nu}-p_{\mu} p_{\nu}\right) G_{\mu \nu}(p)
$$

Free propagator in Feynman gauge: $G_{\mu \nu}(p)=\frac{\delta_{\mu \nu}}{p^{2}}$

$$
\langle E(t)\rangle=\frac{g_{0}^{2}\left(N^{2}-1\right)(D-1)}{2(8 \pi t)^{D / 2}}+O\left(g_{0}^{4}\right)
$$

Factor $D-1$ from Euclidean trace, integral over p finite

The Yang-Mills gradient flow

$$
\langle E(t)\rangle=\frac{g_{0}^{2}\left(N^{2}-1\right)(D-1)}{2(8 \pi t)^{D / 2}}+O\left(g_{0}^{4}\right)
$$

All of this was tree-level. 1-loop: $1 / \varepsilon$ divergence, cancelled by definition of renormalized coupling

$$
g_{0}^{2}=g_{\overline{\mathrm{MS}}}^{2}(\mu) \mu^{2 \varepsilon}\left(4 \pi e^{-\gamma}\right)^{-\varepsilon}\left(1-\frac{b_{0} g_{\mathrm{MS}}^{2}(\mu)}{\varepsilon}+O\left(g_{\overline{\mathrm{MS}}}^{4}\right)\right)
$$

g_{0} : bare, $g_{\overline{\mathrm{MS}}}$: renormalized, b_{0} : first β-function coefficient μ : dimreg scale

The Yang-Mills gradient flow

In terms of the renormalized coupling

$$
\langle E(t)\rangle=\frac{g_{\mathrm{MS}}^{2}(\mu)\left(N^{2}-1\right)(D-1)}{2(8 \pi t)^{D / 2}}+O\left(g_{\overline{\mathrm{MS}}}^{4}\right)
$$

In $D=4$ we have

$$
\langle E(t)\rangle=\frac{3 g_{\overline{\mathrm{MS}}}^{2}(\mu)\left(N^{2}-1\right)}{128 \pi^{2} t^{2}}+O\left(g_{\mathrm{MS}}^{4}\right)
$$

The Yang-Mills gradient flow

$$
\langle E(t)\rangle=\frac{3 g_{\overline{\mathrm{MS}}}^{2}(\mu)\left(N^{2}-1\right)}{128 \pi^{2} t^{2}}+O\left(g \frac{4}{\mathrm{MS}}\right)
$$

We have a finite expression for $t>0$ (at least to leading order)!

Commments:

- Finite to all orders
- Finite non-perturbatively
- Fermions enter at 1-Ioop

$$
\langle E(t)\rangle=\frac{3 g_{\overline{\mathrm{MS}}}^{2}(\mu)\left(N^{2}-1\right)}{128 \pi^{2} t^{2}}+O\left(g_{\mathrm{MS}}^{4}\right)
$$

Quick sanity check: at $t=0$ there should be a divergence when written in terms of g_{R}, it is there: $1 / t^{2}$.

Lessons:

- Composite operator became finite if $t>0$
- $A_{\mu}(t)$ kind of renormalized field
- No other renormalization necessary beyond usual $g_{0} \rightarrow g_{R}$

Smoothing/averaging property of gradient flow \sim renormalization!

The Yang-Mills gradient flow

What about non-perturbative $\left\langle t^{2} E(t)\right\rangle$?

This is from a QCD lattice calculation at fixed lattice spacing.

The Yang-Mills gradient flow

Running coupling $\mu=1 / \sqrt{8 t}$

$$
g^{2}(1 / \sqrt{8 t})=\frac{128 \pi^{2}\left\langle t^{2} E(t)\right\rangle}{3\left(N^{2}-1\right)}
$$

Right hand side evaluated non-perturbatively, definition for left hand side.

All of this in infinite volume.

Finite volume gradient flow scheme

All of this was in infinite volume. Need: $1 / L \ll \mu \ll 1 / a$

Better: $1 / L=\mu \ll 1 / a$

Wolff, Luscher, ...

Same idea as in Schroedinger functional \rightarrow step scaling \rightarrow no "finite volume effects"

Need: Yang-Mills gradient flow on 4-torus T^{4} i.e. finite volume

Main result

$$
\begin{gathered}
\left\langle t^{2} E(t)\right\rangle=\frac{3\left(N^{2}-1\right)}{128 \pi^{2}} g \frac{2}{\mathrm{MS}}(\mu)\left(1+\delta_{a}(L)+\delta_{e}(L)\right) \\
\delta_{a}(L)=-\frac{64 t^{2} \pi^{2}}{3 L^{4}} \\
\delta_{e}(L)=\vartheta^{4}\left(\exp \left(-\frac{L^{2}}{8 t}\right)\right)-1=8 \exp \left(-\frac{L^{2}}{8 t}\right)+24 \exp \left(-\frac{L^{2}}{4 t}\right)+\ldots
\end{gathered}
$$

Correction $\delta(L)=\delta_{a}(L)+\delta_{e}(L)$ only depends on $c=\sqrt{8 t} / L$.

Asymptotic freedom \rightarrow perturbation theory for small L

Periodic gauge field, anti-periodic fermions
Separate zero gauge modes $A_{\mu}(x)=B_{\mu}+Q_{\mu}(x)$
Gauge fixing, ghosts
For small L : integrate out $Q_{\mu}(x)$, ghosts, fermions in 1-loop, treat B_{μ} exactly

Integrating out $Q_{\mu}(x)$: effective action for B_{μ}
Solve flow for $B_{\mu}(t)$ and $Q_{\mu}(t, x)$
Evaluate $\langle E(t)\rangle_{B}$ by integrating out Q_{μ} perturbatively and then integrate over B_{μ} exactly (4-matrix integrals)

Gradient flow running coupling scheme

$$
g_{R}^{2}(L)=\frac{128 \pi^{2}\left\langle t^{2} E(t)\right\rangle}{3\left(N^{2}-1\right)(1+\delta(c))}
$$

In principle two scales $g_{R}^{2}(t, L)$ let's keep $c=\sqrt{8 t} / L$ fixed

1-parameter family of running coupling schemes

By construction all of them run with the universal 1-Ioop β-function for small g_{R}

Very easy to measure on the lattice! No expensive fermionic measurements.
$g_{R}^{2}(L)$ in terms of $g_{\overline{\mathrm{MS}}}$ contains both even and odd powers, as in finite- T perturbative calculations

Gradient flow running coupling scheme

Numerical implementation for $S U(3), N_{f}=4$ fundamental (stout improved staggered) fermions, $c=0.3$

Calculate discrete β-function, $L \rightarrow s L, \quad c=\sqrt{8 t} / L=0.3$

$$
\frac{g^{2}(s L)-g^{2}(L)}{\log \left(s^{2}\right)}
$$

For $s=3 / 2 \quad 12 \rightarrow 18,16 \rightarrow 24,24 \rightarrow 36$

Continuum limit: $L / a \rightarrow \infty$

Results, $s=3 / 2$

Bare g_{0} or $\beta=6 / g_{0}^{2}$ moves us along the x -axis

Results, $s=3 / 2$, continuum extrapolation

Backup slides with continuum extrapolation.

Gradient flow scheme

Works very well for $S U(3)$ and $N_{f}=4$
Let's see $S U(3)$ and $N_{f}=8$
$s=3 / 2 \quad 8 \rightarrow 12,12 \rightarrow 18,16 \rightarrow 24,20 \rightarrow 30,24 \rightarrow 36$
$c=\sqrt{8 t} / L=0.3$

Exactly the same setup as $N_{f}=4$

Results for $S U(3)$ and $N_{f}=8$, preliminary

Working on continuum limit ... no sign of fixed point!

Outlook

Fermion flow $\psi(t)$

Schroedinger functional + gradient flow

Lots of other applications ...
$S U(3)$ with $N_{f}=12,16$
$N_{f}=16$ should be conformal
$N_{f}=12$ currently various groups and various approaches don't agree, would be good to know

Summary

- Yang-Mills gradient flow is a great new tool
- New look at renormalization
- Cheap gluonic measurement, high precision
- 1-parameter family, c can be optimized
- β-function for $S U(3) N_{f}=4,8$

Thank you for your attention!

Results, $s=3 / 2$, continuum extrapolation

Parametrization of $g_{R}(\beta, L / a)$ as a function of β for fixed L / a

Results, $s=3 / 2$, continuum extrapolation

