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Outline

• Yang-Mills gradient flow

• Finite volume calculation

• Running coupling in finite volume, step scaling

• Continuum results for SU(3) fundamental Nf = 4

• Preliminary results for SU(3) fundamental Nf = 8



Yang-Mills gradient flow

Luscher considered the following flow in the space of gauge fields

Ȧµ = −
δSYM
δAµ

= DνFνµ

Aµ(t, x1, x2, x3, x4) where t is auxiliary “time”, dimension length2

Aµ(t) is uniquely calculable from Aµ(0), smoothing operation:

Zeroth order in perturbation theory Aµ(t, p) = e−p
2tAµ(0, p)



Yang-Mills gradient flow

Consider SU(N) gauge theory + Nf fermions in repr R

Path integral usually:

〈O(A)〉 =

∫
DAdψdψ̄O(A)e−S(A,ψ)∫
DAdψdψ̄e−S(A,ψ)

Suggestion of Luscher: path integral over Aµ(0, x) but observables

on Aµ(t, x) for t > 0, flow becomes part of the observable:

〈Ot(A)〉 =

∫
DA(0)dψdψ̄O(A(t))e−S(A(0),ψ)∫

DA(0)dψdψ̄e−S(A(0),ψ)



Yang-Mills gradient flow

Why?

Gradient flow is smoothing/averaging/blocking: 〈O(x)O(y)〉 cor-

relation function, x→ y singularities might be tamed?

Let’s try with the simplest composite operator first: E = −1
4TrFµνFµν

Observable E(t) = −1
4TrFµν(t)Fµν(t)

On the lattice: plaquette from Uµ(t) smoothed fields



Yang-Mills gradient flow

Calculate 〈E(t)〉 in dimensional regularization in MS scheme

D = 4− 2ε.

Remember: path integral over Aµ(t = 0), observable at Aµ(t > 0).

〈E(t)〉 =
g2

0

2
〈∂µAaν(t)∂µA

a
ν(t)− ∂µAaν(t)∂νA

a
µ(t)〉+ · · ·

In momentum space, lowest order: Aµ(t, p) = e−tp
2
Aµ(0, p)



The Yang-Mills gradient flow

E is quadratic in Aµ: free propagator, two factors of e−tp
2

Gauge sum: factor of N2 − 1.

〈E(t)〉 =
g2

0(N2 − 1)

2

∫
dDp

(2π)D
e−2tp2 (

p2δµν − pµpν
)
Gµν(p)

Free propagator in Feynman gauge: Gµν(p) =
δµν
p2

〈E(t)〉 =
g2

0(N2 − 1)(D − 1)

2(8πt)D/2
+O(g4

0)

Factor D − 1 from Euclidean trace, integral over p finite



The Yang-Mills gradient flow

〈E(t)〉 =
g2

0(N2 − 1)(D − 1)

2(8πt)D/2
+O(g4

0)

All of this was tree-level. 1-loop: 1/ε divergence, cancelled by

definition of renormalized coupling

g2
0 = g2

MS
(µ)µ2ε

(
4πe−γ

)−ε1−
b0g

2
MS

(µ)

ε
+O(g4

MS
)



g0: bare, gMS: renormalized, b0: first β-function coefficient

µ: dimreg scale



The Yang-Mills gradient flow

In terms of the renormalized coupling

〈E(t)〉 =
g2

MS
(µ)(N2 − 1)(D − 1)

2(8πt)D/2
+O(g4

MS
)

In D = 4 we have

〈E(t)〉 =
3g2

MS
(µ)(N2 − 1)

128π2t2
+O(g4

MS
)



The Yang-Mills gradient flow

〈E(t)〉 =
3g2

MS
(µ)(N2 − 1)

128π2t2
+O(g4

MS
)

We have a finite expression for t > 0 (at least to leading order)!

Commments:

• Finite to all orders

• Finite non-perturbatively

• Fermions enter at 1-loop



The Yang-Mills gradient flow

〈E(t)〉 =
3g2

MS
(µ)(N2 − 1)

128π2t2
+O(g4

MS
)

Quick sanity check: at t = 0 there should be a divergence when
written in terms of gR, it is there: 1/t2.

Lessons:

• Composite operator became finite if t > 0

• Aµ(t) kind of renormalized field

• No other renormalization necessary beyond usual g0 → gR

Smoothing/averaging property of gradient flow ∼ renormalization!



The Yang-Mills gradient flow

What about non-perturbative 〈t2E(t)〉 ?
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This is from a QCD lattice calculation at fixed lattice spacing.



The Yang-Mills gradient flow

Running coupling µ = 1/
√

8t

g2(1/
√

8t) =
128π2〈t2E(t)〉

3(N2 − 1)

Right hand side evaluated non-perturbatively, definition for left

hand side.

All of this in infinite volume.



Finite volume gradient flow scheme

All of this was in infinite volume. Need: 1/L� µ� 1/a

Better: 1/L = µ� 1/a

Wolff, Luscher, ...

Same idea as in Schroedinger functional → step scaling → no

“finite volume effects”

Need: Yang-Mills gradient flow on 4-torus T4 i.e. finite volume



Main result

〈t2E(t)〉 =
3(N2 − 1)

128π2
g2

MS
(µ) (1 + δa(L) + δe(L))

δa(L) = −
64t2π2

3L4

δe(L) = ϑ4
(

exp

(
−
L2

8t

))
− 1 = 8 exp

(
−
L2

8t

)
+ 24 exp

(
−
L2

4t

)
+ . . .

Correction δ(L) = δa(L) + δe(L) only depends on c =
√

8t/L.



Sketch of calculation Luscher, Pierre van Baal

Asymptotic freedom → perturbation theory for small L

Periodic gauge field, anti-periodic fermions

Separate zero gauge modes Aµ(x) = Bµ +Qµ(x)

Gauge fixing, ghosts

For small L: integrate out Qµ(x), ghosts, fermions in 1-loop, treat

Bµ exactly

Integrating out Qµ(x): effective action for Bµ

Solve flow for Bµ(t) and Qµ(t, x)

Evaluate 〈E(t)〉B by integrating out Qµ perturbatively and then

integrate over Bµ exactly (4-matrix integrals)



Gradient flow running coupling scheme

g2
R(L) =

128π2〈t2E(t)〉
3(N2 − 1)(1 + δ(c))

In principle two scales g2
R(t, L) let’s keep c =

√
8t/L fixed

1-parameter family of running coupling schemes

By construction all of them run with the universal 1-loop β-function

for small gR

Very easy to measure on the lattice! No expensive fermionic mea-

surements.

g2
R(L) in terms of gMS contains both even and odd powers, as in

finite-T perturbative calculations



Gradient flow running coupling scheme

Numerical implementation for SU(3), Nf = 4 fundamental (stout

improved staggered) fermions, c = 0.3

Calculate discrete β-function, L→ sL, c =
√

8t/L = 0.3

g2(sL)− g2(L)

log(s2)

For s = 3/2 12→ 18, 16→ 24, 24→ 36

Continuum limit: L/a→∞



Results, s = 3/2
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Results, s = 3/2, continuum extrapolation
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Backup slides with continuum extrapolation.



Gradient flow scheme

Works very well for SU(3) and Nf = 4

Let’s see SU(3) and Nf = 8

s = 3/2 8→ 12, 12→ 18, 16→ 24, 20→ 30, 24→ 36

c =
√

8t/L = 0.3

Exactly the same setup as Nf = 4



Results for SU(3) and Nf = 8, preliminary
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Working on continuum limit ... no sign of fixed point!



Outlook

Fermion flow ψ(t) Luscher

Schroedinger functional + gradient flow Fritzsch, Ramos

Lots of other applications ...

SU(3) with Nf = 12,16

Nf = 16 should be conformal

Nf = 12 currently various groups and various approaches don’t

agree, would be good to know



Summary

• Yang-Mills gradient flow is a great new tool

• New look at renormalization

• Cheap gluonic measurement, high precision

• 1-parameter family, c can be optimized

• β-function for SU(3) Nf = 4,8



Thank you for your attention!



Results, s = 3/2, continuum extrapolation
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Results, s = 3/2, continuum extrapolation
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