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Outline

e Yang-Mills gradient flow

e Finite volume calculation

e Running coupling in finite volume, step scaling

e Continuum results for SU(3) fundamental Ny = 4

e Preliminary results for SU(3) fundamental N; =8



Yang-Mills gradient flow

LLuscher considered the following flow in the space of gauge fields

- 0SYy M

Au(t,x1,z0,x3,24) Where t is auxiliary “time”, dimension length?
A, (t) is uniquely calculable from A,(0), smoothing operation:

Zeroth order in perturbation theory A, (t,p) = e_thAM(O,p)



Yang-Mills gradient flow
Consider SU(N) gauge theory + Ny fermions in repr R
Path integral usually:

| DAdypdipO(A)e=5(AY)
o= [ DAddpe—SAD)

Suggestion of Luscher: path integral over A,(0,x) but observables
on A,(t,z) for t > 0, flow becomes part of the observable:

[ DA(O)depdpO(A(t))e5(A0)¥)
= [ DA(0)dwdipe—S(A0)%)




Yang-Mills gradient flow

Why?

Gradient flow is smoothing/averaging/blocking: (O(xz)O(y)) cor-
relation function, x — y singularities might be tamed?

Let’s try with the simplest composite operator first: F = —%Tr FuvFuy
Observable E(t) = —2Tr Fjuu () Fuu(t)

On the lattice: plaquette from Uy,(t) smoothed fields



Yang-Mills gradient flow

Calculate (E(t)) in dimensional regularization in MS scheme
D=4 — 2¢.

Remember: path integral over A,(t = 0), observable at A,(t > 0).

2
(B(8)) = DO ALD0AL(E) — DuALB)OALD) + -+

In momentum space, lowest order: A,(t,p) = e_tPQAM(O,p)



The Yang-Mills gradient flow

E is quadratic in Ay,: free propagator, two factors of e—th

Gauge sum: factor of N2 — 1.

2
(B(t) = (N

—1) / (27_(_)D —2tp? (p25MV — plupy) G,uu(p)

Free propagator in Feynman gauge: G (p) = %—2’/

g3(N? —1)(D — 1)

(E(t)) = >(&r)D/2

+ 0(g3)

Factor D — 1 from Euclidean trace, integral over p finite



The Yang-Mills gradient flow

gd(N?2 —1)(D —1)

4
L + O(905)

(E(t)) =

All of this was tree-level. 1-loop: 1/e divergence, cancelled by
definition of renormalized coupling

. b
95 = g2 () (4me™ ) (1 00hss ' (“)+o<gﬁﬂs>>

go: bare, gyg: renormalized, bo: first S-function coefficient
w. dimreg scale



The Yang-Mills gradient flow

In terms of the renormalized coupling

(W)(N? —1)(D —1)

(5t = S
- 2(8rt)D/2

+ O(g3re)

In D =4 we have

392 (1) (N? — 1)

(B(t) = ZMS 22—+ Olgiss)




The Yang-Mills gradient flow

392 (u)(N? — 1)
12872t2

(B(t)) = +0(gho)

We have a finite expression for t > 0 (at least to leading order)!

Commments:
e Finite to all orders
e Finite non-perturbatively

e Fermions enter at 1-loop



The Yang-Mills gradient flow

392 (u)(N? — 1)

(EQ)) = 1287212

+ O(g5:5)

Quick sanity check: at ¢t = O there should be a divergence when
written in terms of gp, it is there: 1/t2.

L essons:
e Composite operator became finite if ¢t > 0
e A,(t) kind of renormalized field
e No other renormalization necessary beyond usual gg — gr

Smoothing/averaging property of gradient flow ~ renormalization!



The Yang-Mills gradient flow

What about non-perturbative (t2E(t)) ?

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

2 E(1)

This is from a QCD lattice calculation at fixed lattice spacing.



The Yang-Mills gradient flow

Running coupling = 1/4/8t

12872 (t2E(t))

2 —

Right hand side evaluated non-perturbatively, definition for left
hand side.

All of this in infinite volume.



Finite volume gradient flow scheme

All of this was in infinite volume. Need: 1/L K< up <K 1/a
Better: 1/L=p<1/a
Wolff, Luscher, ...

Same idea as in Schroedinger functional — step scaling — no
“finite volume effects”

Need: Yang-Mills gradient flow on 4-torus T i.e. finite volume



Main result

3(N2-1)
12872

(tPE(t)) = g2 (1) (1 + 8a(L) + 8e(L))

64t272
3L4

L2 L2 L2
__ 44 _ 1 — = =
de(L) =0 (exp < 8t>> 1 = 8exp < 8t> + 24 exp ( 4t> -+

Correction §(L) = 64(L) + d(L) only depends on ¢ = +/8t/L.

6a(L) = —




Sketch of calculation LLuscher, Pierre van Baal
Asymptotic freedom — perturbation theory for small L

Periodic gauge field, anti-periodic fermions

Separate zero gauge modes A, (x) = B, + Qu(x)

Gauge fixing, ghosts

For small L: integrate out Q,(z), ghosts, fermions in 1-loop, treat
B, exactly

Integrating out Qu(z): effective action for By,
Solve flow for By, (t) and Qu(t, x)

Evaluate (E(t))p by integrating out @, perturbatively and then
integrate over B, exactly (4-matrix integrals)



Gradient flow running coupling scheme

128712 (t°E(t))
3(N?2 = 1)(1+6(c))

g% (L) =

In principle two scales g%(t, L) let's keep ¢ = +/8t/L fixed
1-parameter family of running coupling schemes

By construction all of them run with the universal 1-loop g-function
for small g

Very easy to measure on the latticel! No expensive fermionic mea-
surements.

g%(L) in terms of ggs contains both even and odd powers, as in
finite-1T' perturbative calculations



Gradient flow running coupling scheme

Numerical implementation for SU(3), Ny = 4 fundamental (stout
improved staggered) fermions, ¢ = 0.3

Calculate discrete g-function, L — sL, c=+8t/L=0.3

g2(sL) — g%(L)
log(s?)

For s = 3/2 12 — 18, 16 — 24, 24 — 36

Continuum limit: L/a — o



Results, s = 3/2
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Bare gg or 3 =6/g3 moves us along the x-axis




Results, s = 3/2, continuum extrapolation
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Backup slides with continuum extrapolation.



Gradient flow scheme

Works very well for SU(3) and Ny =4

Let's see SU(3) and Ny =8

s =3/2 8 — 12, 12 — 18, 16 — 24, 20 — 30, 24 — 36
c=+/8t/L=0.3

Exactly the same setup as Ny =4



Results for SU(3) and Ny = 8, preliminary
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Working on continuum limit ... no sign of fixed point!



Outlook

Fermion flow ¥ (t) Luscher
Schroedinger functional 4+ gradient flow Fritzsch, Ramos
Lots of other applications ...

SU(3) with Ny = 12,16

Ny = 16 should be conformal

Nf — 12 currently various groups and various approaches don't
agree, would be good to know



Summary

e Yang-Mills gradient flow is a great new tool

e New |look at renormalization

e Cheap gluonic measurement, high precision

e l-parameter family, ¢ can be optimized

e gB-function for SU(3) Ny = 4,8



Thank you for your attention!



Results, s = 3/2, continuum extrapolation

Parametrization of gr(3,L/a) as a function of g for fixed L/a



Results, s = 3/2, continuum extrapolation
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