The gradient flow running coupling scheme

Dániel Nógrádi

in collaboration with

Zoltan Fodor, Kieran Holland

Julius Kuti, Chik Him Wong

Outline

- Yang-Mills gradient flow
- Finite volume calculation
- Running coupling in finite volume, step scaling
- Continuum results for SU(3) fundamental $N_f = 4$
- Preliminary results for SU(3) fundamental $N_f = 8$

Luscher considered the following flow in the space of gauge fields

$$\dot{A}_{\mu} = -\frac{\delta S_{YM}}{\delta A_{\mu}} = D_{\nu} F_{\nu\mu}$$

 $A_{\mu}(t, x_1, x_2, x_3, x_4)$ where t is auxiliary "time", dimension length²

 $A_{\mu}(t)$ is uniquely calculable from $A_{\mu}(0)$, smoothing operation:

Zeroth order in perturbation theory $A_{\mu}(t,p) = e^{-p^2 t} A_{\mu}(0,p)$

Consider SU(N) gauge theory + N_f fermions in repr R

Path integral usually:

$$\langle \mathcal{O}(A) \rangle = \frac{\int DAd\psi d\bar{\psi} \mathcal{O}(A) e^{-S(A,\psi)}}{\int DAd\psi d\bar{\psi} e^{-S(A,\psi)}}$$

Suggestion of Luscher: path integral over $A_{\mu}(0,x)$ but observables on $A_{\mu}(t,x)$ for t > 0, flow becomes part of the observable:

$$\langle \mathcal{O}_t(A) \rangle = \frac{\int DA(0) d\psi d\bar{\psi} \mathcal{O}(A(t)) e^{-S(A(0),\psi)}}{\int DA(0) d\psi d\bar{\psi} e^{-S(A(0),\psi)}}$$

Why?

Gradient flow is smoothing/averaging/blocking: $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle$ correlation function, $x \to y$ singularities might be tamed?

Let's try with the simplest composite operator first: $E = -\frac{1}{4} \operatorname{Tr} F_{\mu\nu} F_{\mu\nu}$

Observable $E(t) = -\frac{1}{4} \operatorname{Tr} F_{\mu\nu}(t) F_{\mu\nu}(t)$

On the lattice: plaquette from $U_{\mu}(t)$ smoothed fields

Calculate $\langle E(t) \rangle$ in dimensional regularization in $\overline{\text{MS}}$ scheme $D = 4 - 2\varepsilon$.

Remember: path integral over $A_{\mu}(t=0)$, observable at $A_{\mu}(t>0)$.

$$\langle E(t)\rangle = \frac{g_0^2}{2} \langle \partial_\mu A^a_\nu(t) \partial_\mu A^a_\nu(t) - \partial_\mu A^a_\nu(t) \partial_\nu A^a_\mu(t) \rangle + \cdots$$

In momentum space, lowest order: $A_{\mu}(t,p) = e^{-tp^2}A_{\mu}(0,p)$

E is quadratic in A_{μ} : free propagator, two factors of e^{-tp^2}

Gauge sum: factor of $N^2 - 1$.

$$\langle E(t) \rangle = \frac{g_0^2(N^2 - 1)}{2} \int \frac{d^D p}{(2\pi)^D} e^{-2tp^2} \left(p^2 \delta_{\mu\nu} - p_\mu p_\nu \right) G_{\mu\nu}(p)$$

Free propagator in Feynman gauge: $G_{\mu\nu}(p) = \frac{\delta_{\mu\nu}}{p^2}$

$$\langle E(t) \rangle = \frac{g_0^2 (N^2 - 1)(D - 1)}{2(8\pi t)^{D/2}} + O(g_0^4)$$

Factor D-1 from Euclidean trace, integral over p finite

$$\langle E(t) \rangle = \frac{g_0^2 (N^2 - 1)(D - 1)}{2(8\pi t)^{D/2}} + O(g_0^4)$$

All of this was tree-level. 1-loop: $1/\varepsilon$ divergence, cancelled by definition of renormalized coupling

$$g_0^2 = g_{\overline{\mathsf{MS}}}^2(\mu)\mu^{2\varepsilon} \left(4\pi e^{-\gamma}\right)^{-\varepsilon} \left(1 - \frac{b_0 g_{\overline{\mathsf{MS}}}^2(\mu)}{\varepsilon} + O(g_{\overline{\mathsf{MS}}}^4)\right)$$

 g_0 : bare, $g_{\overline{\rm MS}}$: renormalized, b_0 : first β -function coefficient μ : dimreg scale

In terms of the renormalized coupling

$$\langle E(t) \rangle = \frac{g_{\overline{\text{MS}}}^2(\mu)(N^2 - 1)(D - 1)}{2(8\pi t)^{D/2}} + O(g_{\overline{\text{MS}}}^4)$$

In D = 4 we have

$$\langle E(t) \rangle = \frac{3g_{\overline{\text{MS}}}^2(\mu)(N^2 - 1)}{128\pi^2 t^2} + O(g_{\overline{\text{MS}}}^4)$$

$$\langle E(t) \rangle = \frac{3g_{\overline{\text{MS}}}^2(\mu)(N^2 - 1)}{128\pi^2 t^2} + O(g_{\overline{\text{MS}}}^4)$$

We have a finite expression for t > 0 (at least to leading order)!

Comments:

- Finite to all orders
- Finite non-perturbatively

• Fermions enter at 1-loop

$$\langle E(t) \rangle = \frac{3g_{\overline{\text{MS}}}^2(\mu)(N^2 - 1)}{128\pi^2 t^2} + O(g_{\overline{\text{MS}}}^4)$$

Quick sanity check: at t = 0 there should be a divergence when written in terms of g_R , it is there: $1/t^2$.

Lessons:

- Composite operator became finite if t > 0
- $A_{\mu}(t)$ kind of renormalized field
- No other renormalization necessary beyond usual $g_0 \rightarrow g_R$

Smoothing/averaging property of gradient flow \sim renormalization!

What about non-perturbative $\langle t^2 E(t) \rangle$?

This is from a QCD lattice calculation at fixed lattice spacing.

Running coupling $\mu=1/\sqrt{8t}$

$$g^{2}(1/\sqrt{8t}) = \frac{128\pi^{2}\langle t^{2}E(t)\rangle}{3(N^{2}-1)}$$

Right hand side evaluated non-perturbatively, definition for left hand side.

All of this in infinite volume.

Finite volume gradient flow scheme

All of this was in infinite volume. Need: $1/L \ll \mu \ll 1/a$

Better: $1/L = \mu \ll 1/a$

Wolff, Luscher, ...

Same idea as in Schroedinger functional \rightarrow step scaling \rightarrow no "finite volume effects"

Need: Yang-Mills gradient flow on 4-torus T^4 i.e. finite volume

Main result

$$\langle t^2 E(t) \rangle = \frac{3(N^2 - 1)}{128\pi^2} g_{\overline{\text{MS}}}^2(\mu) \left(1 + \delta_a(L) + \delta_e(L)\right)$$

$$\delta_a(L) = -\frac{64t^2\pi^2}{3L^4}$$
$$\delta_e(L) = \vartheta^4 \left(\exp\left(-\frac{L^2}{8t}\right) \right) - 1 = 8 \exp\left(-\frac{L^2}{8t}\right) + 24 \exp\left(-\frac{L^2}{4t}\right) + \dots$$

Correction $\delta(L) = \delta_a(L) + \delta_e(L)$ only depends on $c = \sqrt{8t}/L$.

Sketch of calculation

Luscher, Pierre van Baal

Asymptotic freedom \rightarrow perturbation theory for small L

Periodic gauge field, anti-periodic fermions

Separate zero gauge modes $A_{\mu}(x) = B_{\mu} + Q_{\mu}(x)$

Gauge fixing, ghosts

For small *L*: integrate out $Q_{\mu}(x)$, ghosts, fermions in 1-loop, treat B_{μ} exactly

Integrating out $Q_{\mu}(x)$: effective action for B_{μ}

```
Solve flow for B_{\mu}(t) and Q_{\mu}(t,x)
```

Evaluate $\langle E(t) \rangle_B$ by integrating out Q_μ perturbatively and then integrate over B_μ exactly (4-matrix integrals)

Gradient flow running coupling scheme

$$g_R^2(L) = \frac{128\pi^2 \langle t^2 E(t) \rangle}{3(N^2 - 1)(1 + \delta(c))}$$

In principle two scales $g_R^2(t,L)$ let's keep $c = \sqrt{8t}/L$ fixed

1-parameter family of running coupling schemes

By construction all of them run with the universal 1-loop β -function for small g_R

Very easy to measure on the lattice! No expensive fermionic measurements.

 $g_R^2(L)$ in terms of $g_{\overline{\text{MS}}}$ contains both even and odd powers, as in finite-T perturbative calculations

Gradient flow running coupling scheme

Numerical implementation for SU(3), $N_f = 4$ fundamental (stout improved staggered) fermions, c = 0.3

Calculate discrete β -function, $L \rightarrow sL$, $c = \sqrt{8t}/L = 0.3$

$$\frac{g^2(sL) - g^2(L)}{\log(s^2)}$$

For s = 3/2 12 \rightarrow 18, 16 \rightarrow 24, 24 \rightarrow 36

Continuum limit: $L/a \rightarrow \infty$

Results, s = 3/2

Bare g_0 or $\beta = 6/g_0^2$ moves us along the x-axis

Results, s = 3/2, continuum extrapolation

Backup slides with continuum extrapolation.

Gradient flow scheme

Works very well for
$$SU(3)$$
 and $N_f = 4$

Let's see SU(3) and $N_f = 8$

s = 3/2 $8 \rightarrow 12, 12 \rightarrow 18, 16 \rightarrow 24, 20 \rightarrow 30, 24 \rightarrow 36$

 $c = \sqrt{8t}/L = 0.3$

Exactly the same setup as $N_f = 4$

Results for SU(3) and $N_f = 8$, preliminary

Working on continuum limit ... no sign of fixed point!

Outlook

Fermion flow $\psi(t)$

Luscher

Schroedinger functional + gradient flow

Fritzsch, Ramos

Lots of other applications ...

SU(3) with $N_f = 12, 16$

 $N_f = 16$ should be conformal

 $N_f=$ 12 currently various groups and various approaches don't agree, would be good to know

Summary

- Yang-Mills gradient flow is a great new tool
- New look at renormalization
- Cheap gluonic measurement, high precision
- \bullet 1-parameter family, c can be optimized
- β -function for SU(3) $N_f = 4,8$

Thank you for your attention!

Results, s = 3/2, continuum extrapolation

Parametrization of $g_R(\beta,L/a)$ as a function of β for fixed L/a

Results, s = 3/2, continuum extrapolation

