

LHC Injectors Upgrade

Q20 in SPS

H. Bartosik on behalf of LIU-SPS, G. Arduini, T. Argyropoulos, W. Bartmann, T. Bohl, C. Bracco, S. Cettour Cave, K. Cornelis, H. Damerau, J. Esteban Muller, G. Franchetti, E. Gianfelice-Wendt, A. Guerrero, B. Goddard, W. Höfle, G. Iadarola, V. Kain, K. Li, E. Métral, Y. Papaphilippou, G. Rumolo, B. Salvant, E. Shaposhnikova, D. Valuch, G. Vanbavinckhove, J. Wenninger and OP crew

Motivation for lowering transition energy in SPS (Q20 optics)

- Larger slip factor η (factor 3 at 26GeV, 1.6 at 450GeV) \rightarrow higher instability thresholds
- Transverse TMCI at injection, electron cloud instability
- Longitudinal multi bunch instability, loss of Landau damping

High intensity single bunch

- TMCI threshold in Q26 at around 1.6x10¹¹ p/b
- Up to 4x10¹¹ p/b without TMCI in Q20 with low chroma

N_{th}~ <mark>|η</mark>|ε_l/β_y

Motivation for lowering transition energy in SPS (Q20 optics)

- Larger slip factor η (factor 3 at 26GeV, 1.6 at 450GeV) \rightarrow higher instability thresholds
- Transverse TMCI at injection, electron cloud instability
- · Longitudinal multi bunch instability, loss of Landau damping

High intensity single bunch

- TMCI threshold in Q26 at around 1.6x10¹¹ p/b
- Up to 4x10¹¹ p/b without TMCI in Q20 with low chroma

• Longitudinal stability (see talk of T. Argyropoulos)

- Longitudinal instability threshold scales with slip factor η
- Clear improvement with Q20 optics wrt. Q26
 - For single and multi bunch beams
- Less controlled longitudinal blow-up for same intensity in Q20

Important step in 2012: making Q20 operational

• LMC decided to switch to Q20 when longitudinal setup with Q26 became difficult

 $N_{th} \sim |\eta| \epsilon_{l} / \beta_{v}$

At flat top maximal need to shorten bunches for transfer to LHC

- Maximal RF voltage already used in Q26 optics
- Beam with same longitudinal emittance would have larger bunch length in Q20

Similar bunch length at flat top in both optics for same longitudinal stability

- With smaller longitudinal emittance in Q20 optics (due to higher threshold)
- Demonstrated in MD studies and in preparation for testing injection into LHC
 - Smaller rms spread in bunch length at extraction with Q20

 \Rightarrow SPS Q20 ready to deliver to LHC

Preparation of injection into LHC

Series of MDs for setting up extraction bumps and transfer lines

• Transfer line matching (ABT and collaborators)

- Dispersion measurements
 - Similar errors for both optics for Beam 1
 - Small differences between two optics for Beam 2

G. Vanbavinckhove

Brightness measured on LHC flat bottom

Y. Papaphilippou

Space charge tune spread

• High brightness 50ns BCMS beam (see talk of S. Hancock)

- N = 1.95x10¹¹ p/b (at injection)
- ε ~ 1.15µm
- $\Delta Q_x / \Delta Q_v \sim 0.10 / 0.18$ expected from Laslett formula
- Transmission up to flat top around 94% (without scraping)

Space charge tune spread

• High brightness 50ns BCMS beam (see talk of S. Hancock)

- $N = 1.95 \times 10^{11} \text{ p/b}$ (at injection)
- ε ~ 1.15µm
- $\Delta Q_x / \Delta Q_v \sim 0.10 / 0.18$ expected from Laslett formula
- Transmission up to flat top around 94% (without scraping)

2012 achieved beam parameters – 50ns

50ns standard scheme

- Regularly used to fill LHC since September 2012 using Q20 optics, at present PS intensity limit
- Measurements done with 4 batches

50ns BCMS scheme

- Beam sent to the LHC once to check emittance preservation and luminosity gain in LHC
- Measurements done with 3 batches

2012 achieved beam parameters – 25ns

Expected performance: Scaling PSB measurement with LIU budget for blowup and losses

25ns standard scheme

- Regularly used during the LHC scrubbing run
- Measurements done with 4 batches

25ns BCMS scheme

- Used for the LHC 25ns pilot physics run at the end of 2012
- Measurements done with 3 batches

Classical 25ns beam

- 4 batches with up to 1.25x10¹¹ p/b at flat top ready to be injected into LHC
- Longitudinal setup becomes difficult for higher intensity (see talk of T. Argyropoulos)

• 1.3x10¹¹ p/b injected

• No emittance blow-up along bunch train

measured at flat top ...

6

25ns beam – transverse

- 1.3x10¹¹ p/b injected
 - No emittance blow-up along bunch train

1.45x10¹¹ p/b injected

4.5 × 10¹³

4

3.5

3

2.5

2

1.5

1

0,

5

0.5

Intensity

• Blow-up and losses end of 3rd and 4th batch ...

10

Time (s)

15

20

• Electron cloud? (see talk of G. ladarola)

450

400

Bunch #

500

0∟ 250

300

350

measured at flat top ...

600

550

Electron cloud instability - simulations

Head tail simulations

- Uniform electron cloud distribution
- Injection energy
- Electron cloud is located in dipole regions

Presently the nominal 25ns beam does not suffer from ecloud effects, but more margin with Q20 ...

- Instability threshold scales with Q_s (~ η for matched RF-voltage)
- ⇒ Clearly higher instability threshold with Q20!

Summary and conclusions

- Successful implementation of Q20 as operational optics
 - Continuation of successful MD studies since the end of 2010
 - No fundamental problems during 5 months of successful operation
 - Higher brightness measured in the LHC at injection energy after switching to Q20

• No intensity limitation from transverse for single bunches within LIU target parameters

• Up to 4x10¹¹ p/b injected with small chromaticity without instability for nominal long. emittance

High brightness multi-bunch beams

- Good brightness preservation of BCMS beam from the PS up to SPS flat top
- Operation with large space charge tune spread ($\Delta Qy \sim 0.18$) is feasible
- Confirmation of results from single bunch measurements

25ns beam

- Ready for LHC with 4 batches up to 1.25x10¹¹ p/b
- Transverse instabilities for higher intensities need to be understood and cured (e-cloud?)
- Longitudinal studies to be continued for optimizing and stabilizing beam at high energy

• First operational experience with Q20 with ion beams

Further studies and data analysis ongoing

LHC Injectors Upgrade

Thank you for your attention!

