

LHCC Poster Session - CERN, 13 March 2013

Photon Identification Efficiency in ATLAS

ATLAS Electromagnetic Calorimeter

- Three-fold granularity in depth and with an $\eta \times \phi$ granularity
- Excellent for separating direct photons from photons associated to the decay of neutral hadrons in QCD jets

Variables based on EMC for photon identification

- Discriminating variables, based on three layers of EM calorimeter
 - provide information of candidates
 - energy deposit ratios
 - shower widths shower shapes

- 9 discriminating variables distributions
 - · photons are narrow objects
 - fake photons tend to have broader profile and deposit sizable energy beyond calorimeter
 - strips can distinguish the 2 peaks in a π^0 decay

Radiative Z decays

- Final state radiative γ from Z decays
- Event selection based on leptons does not bias γ shower
- Photons have typically low E_T: [10,80] GeV
- The total uncertainty goes from 1% to 5%, dominated by statistical uncertainty

Three data-driven efficiency measurements

- Measurement is available for photon's E_T in [20, 300] GeV
- Photon purity is measured before/after identification, using track isolation as discriminate variable
- photons track isolation: measured in simulation.
- fakes track isolation : measured in data
- Identification efficiency:
- Uncertainty in this measurement comes
- isolation efficiency uncertainty

Pass ID &

- Measured sample Fail ID &
- Pass ID & ass track isolation
- Photons and fakes track isolation efficiency as inputs
- Purity for photons pass(P) and fail(F) ID

Fail track isolation isolation efficiency E_T[GeV] track isolation efficiency

Electron Extrapolation

- Transformation is used to map e to γ
- Electron are selected in Z → ee decays
- Measurement is available for photon's E_T in [20, 80] GeV
- Cumulative distribution function of e and γ discriminating variables integrated from probability distribution function f(x) or g(x)
 - for electrons $F(x) = \int_{-\infty}^{x} f(t) dt$
 - for photons $G(x) = \int_{-\infty}^{x} g(t) dt$
- Smirnov transform function maps the electron variable x_e to a transformed photon variable x_{γ} : $x_{\gamma} = G^{-1}(F(x_e))$
- Uncertainty of this measurement
- · main uncertainty from material knowledge impacting the transform function
- are ~3 % for converted photons and up to ~10% in worst region for unconverted photons

Combination of efficiency in three measurements

- Three data-driven measurements are combined. Correlations among measurements are taken into account.
- Identification efficiency is measured for photons with E_T in [10, 300] GeV.
- Efficiency uncertainty depends on photon's η , E_T and conversion
- 2011: ~7.0%(low E_T) to ~1.0%(high E_T)
- 2012: ~2.5%(low E_T) to ~1.5%(high E_T)

Efficiency uncertainty is important in H $\rightarrow \gamma \gamma$ analysis

600 E_τ[GeV]

Pass track isolation

Fail ID &

- Photon identification uncertainty has a direct impact on the signal strength measurement
- Combination of data-driven methods can provide a powerful constrain on this measurement
- Thanks to the combination of three data-driven measurements, the photon identification gives 2.4% level uncertainty on di-photon event in 2012, and can be further improved with additional data-driven studies

 $\mu = 1.65 \pm 0.24 (stat)_{-0.18}^{+0.25} (syst)$

Reference: ATLAS-CONF-2012-123 https://cds.cern.ch/record/1473426