Ultra-high energy neutrinos at the Pierre Auger Observatory

Jan Ebr for the Pierre Auger Collaboration

- Ultra-high energy neutrinos hold the key to many exciting puzzles in contemporary cosmic-ray physics
- The Pierre Auger Observatory is the largest cosmic ray detector ever built and it happens to also be sensitive to neutrinos
- Neutrinos are detected as extensive air showers that originate very deep in the atmosphere or even in the ground
- Spoiler alert! Neutrinos observed so far:

Ultra-high energy neutrinos at the Pierre Auger Observatory

Jan Ebr for the Pierre Auger Collaboration

- Ultra-high energy neutrinos hold the key to many exciting puzzles in contemporary cosmic-ray physics
- The Pierre Auger Observatory is the largest cosmic ray detector ever built and it happens to also be sensitive to neutrinos
- Neutrinos are detected as extensive air showers that originate very deep in the atmosphere or even in the ground
- Spoiler alert! Neutrinos observed so far: **none**

Jan Ebr for the Pierre Auger Collaboration, 24. 5. 2013, Prague

Extensive air showers

- low flux: using atmosphere as the detection volume
- interactions with air initiate cascades with billions of particles
- fluorescence light (dark nights)
 - calorimetric information on primary energy
 - longitudinal shower development (nature of primary particle)
- ground particle detection (100 % uptime)
 - primary energy from signal strength (calibrated by fluorescence)
 - shower age, muon content ... depends on particular detector
- n. b.: angular resolution good with both methods (geometry, timing)

/e

What are they actually?

Longitudinal shower development suggests transition to higher masses, but dependent on models

Where do they come from?

Particles deflected by magnetic fields. Correlation with AGNs, matter distribution, ... but weak.

How can ultra-high energy neutrinos help answer these questions?

- cosmogenic (diffuse) neutrinos
 - GZK effect: pions vs. photo-disintegration: free neutrons
 - both sources of neutrinos, but GZK much stronger for ultra-high energy

neutrino point sources

- unaffected by magnetic fields
- essentially any acceleration mechanisms produces high-energy pions \rightarrow pro neutrinos from cosmic-ray sources
- Even if none is observed, putting limits can strongly constrain many models.
- IceCube: two PeV neutrinos + recently 26 more at ~100 TeV
 - seemingly incompatible with atmospheric background but any interpretation is solely up to the IceCube collaboration!
 - nevertheless encouraging: there is something out there ...

The Pierre Auger Observatory

surface detector

- 1600 water Cherenkov detectors (3.6 m diameter) in a triangular grid with 1500 meter spacing, covering 3000 km²
- sensitive to both electromagnetic and muonic component, some identification power using time structure of signals

- fluorescence detector
 - 24+3 telescopes with photomultiplier cameras
 - so far not used for neutrino search (low statistics); Czech group involved

The Pierre Auger Observatory

Neutrino channels at the Pierre Auger Observatory

• central idea: separate neutrinos from the overwhelming cosmic-ray background using their ability to pass through a lot of matter

down-going neutrinos

- cosmic rays (protons, nuclei, possibly a small amount of photons) usually interact high in the atmosphere, whereas neutrinos interact anywhere
- at zenith angles > 75° the amount of atmosphere is sufficient for discrimination based on "shower age" (still trade-offs to be made)
- all flavours, both CC and NC contributions, incl. $\nu_{_{\!\mathcal{T}}}$ interactions in the Andes

Neutrino channels at the Pierre Auger Observatory

• Earth-skimming neutrinos

- up-going v_{τ} interacts in the crust via CC \rightarrow produces $\tau \rightarrow$ decays after ~10 km above the array into an electron or a number of pions (~17 % muon channel unobservable)
- not relevant for $\nu_{_{e}}(\text{electron does not escape the ground})$ nor $\nu_{_{u}}(\text{no shower})$
- must be very nearly horizontal (within 5°) for the shower particles to reach the detector via lateral spread
- virtually zero background when such showers are properly identified

How to identify neutrino showers?

1. Select inclined and Earth-skimming events

- geometry: highly eccentric elliptic footprint
- relative timing: ground velocity v~c (vertical showers v>>c)

2. Select "young showers" close to the ground

- "old showers": dominated by muonic component, very short pulses
- "young showers": electromagnetic component, broad signals

Jan Ebr for the Pierre Auger Collaboration, 24. 5. 2013, Prague

How to identify neutrino showers?

3. Fix specific values for the cuts using neutrino and background showers

- neutrino showers simulated in broad parameter space to avoid boundary effects
- simulations of cosmic-ray showers uncertain (i.e. primary composition still unknown) → use a chosen "training" period of data as background
- background more important for down-going → longer training period (less data)
- for Earth-skimming neutrinos: require 0 background events during training period

How to identify neutrino showers?

 for down-going: "Fischer discriminant" - allows to select background rejection vs. efficiency: require 1 background event in 20 years → 90 % neutrinos accepted (10 % falsely rejected)

4. After fixing the method, "unblind" rest of the data and look for neutrinos

• Published data up to May 31, 2010. Data up to end of 2012 to be unveiled at ICRC 2013.

Converting observed rates to flux

- Calculate exposure using simulations of neutrino showers
 - find for which geometries, energies and array positions of the neutrino interaction is the shower observed
- Identify systematic uncertainties of exposure
 - shower simulation, neutrino-nucleus crosssection at ultra-high energy, τ energy losses, topography (not accounted for in Earth-skimming analysis)
 - approximately +35 %, –15 % for Earth-skimming, +13 %, 34 % for down-going

Results

- No neutrino candidates observed → upper limit of 2.44 events at 90 % CL
- Assuming flux $dN/dE = k \cdot E^{-2}$ we obtain both differential and integral limits

