

C E R N o p e n l a b - I n t e l M I C / X e o n P h i t r a i n i n g

Intel® Xeon Phi™ Product Family
Code Optimization

Hans Pabst, April 11th 2013

Software and Services Group
Intel Corporation

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• Introduction to Vectorization

• Ways to write vector code

• Automatic loop vectorization

• Array notation

• Elemental functions

• Other optimizations

• Summary

2

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Parallelism

Parallelism / perf. dimensions

• Across mult. applications

• Across mult. processes

• Across mult. threads

• Across mult. instructions

• SIMD (“Vector” is usually
used as a synonym)

Single Instruction Multiple Data

• Perf. gain simply because
an instruction performs
more works

• Data parallel

3

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

History of SIMD ISA extensions

4

4/12/2013

MMX™ (1997)

Intel® Streaming SIMD Extensions (Intel® SSE in 1999 to Intel® SSE4.2 in 2008)

Intel® Advanced Vector Extensions (Intel® AVX in 2011 and Intel® AVX2 in 2013)

Intel Many Integrated Core Architecture (Intel® MIC Architecture in 2013)

Intel® Pentium® processor (1993)

* Illustrated with the number of 32-bit data elements that are processed by one “packed” instruction.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectors (SIMD)

float *restrict A;
float *B, *C;

for (i=0; i<n; ++i) {
 A[i] = B[i] + C[i];
}

Scalar code computes the above
with one-element at a time.

addps xmm1, xmm2

• SSE: 4 elements at a time
addps xmm1, xmm2

• AVX: 8 elements at a time
vaddps ymm1, ymm2, ymm3

• MIC: 16 elements at a time
vaddps zmm1, zmm2, zmm3

5

b1 b2 b3

c1 c2 c3

b0

c0 +

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector Instructions

• Compile with –S to see assembly code (if you like)

• A vectorized loop contains instructions like

 vfmadd213ps %zmm23, %zmm8, %zmm2 # fma instruction

 vaddps %zmm25, %zmm2, %zmm0 # single precision add

• In a scalar loop, these instructions will be masked, e.g.

 vfmadd213ps %zmm17, %zmm20, %zmm1{%k1}

 vaddps %zmm23, %zmm1, %zmm0{%k1}

• Example of vectorized math function for Intel® MIC
architecture:

 call __svml_sinf16 # calculates sin(x) for 16 floats

 call __svml_sinf16_mask

6

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to Vectorize?

Auto-vectorization, array notation, and vect. hints

• Multiple code paths possible (-ax, /Qax)

• Forward-scaling (different SIMD widths)

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Auto vect. hints (#pragma ivdep, …)

Ultimate control

Ease of use
Fully automatic vectorization

Built-in vectors (explicit)

7

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

double A[1000], B[1000], C[1000];
void add() {
 for (int i = 0; i < 1000; ++i) {
 if (A[i] > 0) {
 A[i] += B[i];
 } else {
 A[i] += C[i];
 }
 }
}

.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, B[rdx*8]
 andps xmm1, xmm0
 andnps xmm0, C[rdx*8]
 orps xmm1, xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 movaps xmm2, A[rdx*8]
 xorps xmm0, xmm0
 cmpltpd xmm0, xmm2
 movaps xmm1, C[rdx*8]
 blendvpd xmm1, B[rdx*8], xmm0
 addpd xmm2, xmm1
 movaps A[rdx*8], xmm2
 add rdx, 2
 cmp rdx, 1000
 jl .B1.2

.B1.2::
 vmovaps ymm3, A[rdx*8]
 vmovaps ymm1, C[rdx*8]
 vcmpgtpd ymm2, ymm3, ymm0
 vblendvpd ymm4, ymm1,B[rdx*8], ymm2
 vaddpd ymm5, ymm3, ymm4
 vmovaps A[rdx*8], ymm5
 add rdx, 4
 cmp rdx, 1000
 jl .B1.2 AVX SSE4.1

SSE2

Multiple Code Paths (Retargeting)

4/12/2013

8

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Overview of Writing Vector Code

Array Notation

A[:] = B[:] + C[:];

SIMD Directive

#pragma simd
for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

Elemental Function

__declspec(vector)
float ef(float a, float b) {
 return a + b;
}

A[:] = ef(B[:], C[:]);

Auto-Vectorization

for (int i = 0; i < N; ++i) {
 A[i] = B[i] + C[i];
}

9

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

GAP Report

Implement
Advice

Vectorization
Report

Resolve
Issues

Automatic Vectorization

Guided Auto-Parallelization (GAP)

• User/advice-oriented terminology

Vectorization report

• Compiler terminology

• More complete

Remove vectorization blockers

• User-mandated vectorization

• Break vector dependencies

10

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorizable math functions

11

acos ceil fabs round

acosh cos floor sin

asin cosh fmax sinh

asinh erf fmin sqrt

atan erfc log tan

atan2 erfinv log10 tanh

atanh exp log2 trunc

cbrt exp2 pow

Also float versions,
such as sinf()

Uses short vector
math library, libsvml

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Report

Get details on vectorization’s success and failure

• L&M: -vec-report<n>, n=0,1,2,3,4,5*

• W: /Qvec-report<n>, n=0,1,2,3,4,5*

12

novec.f90(38): (col. 3) remark: loop was not vectorized: existence of

vector dependence.

novec.f90(39): (col. 5) remark: vector dependence: proven FLOW

dependence between y line 39, and y line 39.

novec.f90(38:3-38:3):VEC:MAIN_: loop was not vectorized: existence of

vector dependence

35: subroutine fd(y)
36: integer :: i
37: real, dimension(10), intent(inout) :: y
38: do i=2,10
39: y(i) = y(i-1) + 1
40: end do
41: end subroutine fd

* Diagnostic level: (0) no diagnostic, (1) vectorized loops, (2) vectorized loops and non-vect. loops

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Report Messages

“Loop was not vectorized” because:

• “Low trip count”

• “Existence of vector dependence”

– Possible dependence of one loop iteration on another, e.g.

 for (j=1; j<MAX; j++) a[j] = a[j] + c * a[j-n];

• "vectorization possible but seems inefficient“

• “Not Inner Loop”

• It may be possible to overcome these using switches,
pragmas, source code changes or explicit vector programming

13

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-Mandated Vectorization

User-mandated vectorization: SIMD directive / pragma

• Enables vectorization of vectorizable inner and outer loops

• Compiler heuristics are overwritten (incorrect code possible)

• Supplements automatic vectorization and other directives
(IVDEP, VECTOR ALWAYS)

14

User Mandated Vectorization OpenMP

Pure Automatic Vectorization Automatic Parallelization

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

SIMD Directive Notation

C/C++: #pragma simd [clause [,clause] …]

Fortran: !DIR$ SIMD [clause [,clause] …]

Without an additional clause, the directive enforces
vectorization of a vectorizable loop.

15

void add_fl(float* a, float* b, float* c, float* d, float* e, int n)

{

 #pragma simd vectorlengthfor(float)

 for (int i=0; i<n; i++)

 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

* Without the SIMD directive, vectorization will fail (too many pointer references to do a run-time overlap-check).

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Clauses for SIMD directives

The programmer (i.e. you!) is responsible for correctness

• Just like for race conditions in OpenMP* loops

Available clauses (both OpenMP and Intel versions)

• PRIVATE |

• FIRSTPRIVATE |

• LASTPRIVATE | --- like OpenMP

• REDUCTION |

• COLLAPSE | (OpenMP 4.0 RC1 only; for nested loops)

• LINEAR (additional induction variables)

• SAFELEN (OpenMP 4.0 RC1 only)

• VECTORLENGTH (Intel only)

• ALIGNED (OpenMP 4.0 RC1 only)

• ASSERT (Intel only; “vectorize or die!”)

16

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Aligning Data

●Allocate memory on heap aligned to n byte boundary:

void* _mm_malloc(int size, int n)

int posix_memaligned(void **p, size_t n, size_t size)

●Alignment for variable declarations:

__attribute__((aligned(n))) var_name or

__declspec(align(n)) var_name

And tell the compiler…
#pragma vector aligned

• Asks compiler to vectorize, overriding cost model, and assuming all
array data accessed in loop are aligned for targeted processor

• May cause fault if data are not aligned

__assume_aligned(array, n)

• Compiler may assume array is aligned to n byte boundary

17

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Aligning Data

• Intel Xeon Phi is sensitive to unaligned load/store

• It’s about the start address for homogenous data

• It’s about each data member for structured data

• Alignment: vector width (64 Byte / 512 bit)

• Intel Xeon Phi fastest offload transfers

• Alignment: page-granularity (4k… 2MB)

• Multiple of vector width / page size

• Memory alignment for offloaded code section is
inherited from alignment on the host unless
specified otherwise (offload pragma’s align mod.)

Intel Confidential 18

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pointer Aliasing

Solutions for C/C++ (less of a
problem in Fortran)

• ANSI rules / conformance

• Compiler switches

• Restrict keyword /
intrinsisc

ANSI rules

Type deduction and qualifiers
specify what cannot alias
each other.

Compiler switches

-fargument-noalias

-ansi-alias

-alias-const

-fno-alias

Example

Option -no-alias assumes
that there is no aliasing.

Intel Confidential 19

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Linux Windows

-restrict /Qrestrict

-std=c99 /Qstd=c99

• Breaks aliasing on a per-function basis

• Assertion to compiler
– Only this pointer points to the underlying data

– Also applies to the incremented pointer etc.

• Available for C (not part of the C++ standard)

– Intel Compiler supports it for C++

20

4/12/2013

Keyword restrict

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Keyword restrict (cont.)

Make the restrict qualifier more portable*

//#define USE_RESTRICT_OPTION

#if defined(__INTEL_COMPILER) && defined(USE_RESTRICT_OPTION)

define RESTRICT restrict

#elif defined(__GNUC__) && !defined(_WIN32) \

 && !defined(__CYGWIN32__)

define RESTRICT __restrict__

#elif defined(_MSC_VER)

define RESTRICT __restrict

#else

define RESTRICT

#endif

Intel Confidential 21

* Or more handy: “better use RESTRICT”.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: OpenMP* vs. Vectors

22

Increase parallelism by combining nested loops

• More thread parallelism, less SIMD parallelism

• For example, A is too small for many cores

• Break-up computation into S-blocks

• Increase thread parallelism by B/S

#pragma omp parallel for collapse(2)
for (int i = 0; i < A; ++i) {
 for (int s = 0; s < B; s += S) {
 int N = min(B – s, S);
 result[i*B+s:N] = a[i*B+s:N] * b[i*B+s:N];
 }
}

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: OpenMP* and Vectors

OpenMP* 4.0 introduces several vector constructs

Helps to improve thread-vector interoperability

For example may help to avoid false sharing

#pragma omp parallel

#pragma omp for simd

for (int i = 0; i < end; ++i) {

 for (int j = 0; j < M; ++j) {

 }

}

Intel Confidential 23

* See http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Pragmas and Directives

List available pragmas: icc -help-pragma <dummy-file>

Examples

• IVDEP ignore vector dependency

• LOOP COUNT advise typical iteration count(s)

• UNROLL suggest loop unroll factor

• DISTRIBUTE POINT advise where to split loop

• VECTOR vectorization hints

– Aligned assume data is aligned

– Always override cost model

– Nontemporal advise use of streaming stores

• NOVECTOR do not vectorize

• NOFUSION do not fuse loops

• INLINE/FORCEINLINE invite/require function inlining

• SIMD ASSERT “vectorize or die”

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus

Language extension (C/C++) for task-parallelism

• Usual advantages of built-in functionality

• Scheduler inspired others (e.g. Intel TBB)

• Blends well with existing code

• Only three main keywords

Data parallelism based on vectors*

• Complements auto-vectorization

• Notation for array sections (slices)

• Elemental functions (kernels)

• Reductions, gather, scatter, etc.

User-mandated vectorization (pragma simd)

25

N Threads

M Tasks

S
c
h
e
d
u
le

r

4/12/2013

* For example, Guy E. Blelloch: Vector Models for Data-Parallel Computing, 1990

v1 v2

v3

+

VL =

vector

length

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector and Elemental Processing

26

Vector Processing Elemental Processing

f

Natural in case of scatter,
or with sync. primitives

z[0:10:10] = a[20:10:2]
 + y[x[0:10]];

… e e e e e e

f

…

r[0:10] = a[0:10]
 * b[0:10]

Kernel Function

y[0:10:10] =
sin(x[20:10:2]);

* The Intel Cilk Plus Array section syntax is [offset:size:stride] whereas F90 uses [lbound:ubound:stride].

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Elemental Functions

• Essentially pre-vectorized functions

• Can be called within a loop without inlining code

• Control flow is supported (masked exec.)

• Similar effect eventually via IP[O] (but more fragile)

• Helps to avoid code bloat

• Great potential for building libraries

• Binary kernel functions would vectorize

• Means: vectorizable in a user’s loop!

• Launching an elemental function

• Works with array sections (“range”)

Intel Confidential 27

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector Elemental Function

28

Compiler generates vector version of a scalar function that can
be called from a vectorized loop:

 __attribute__((vector(uniform(y, xp, yp))))
 float func(float x, float y, float xp, float yp) {

 float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp);

 denom= 1./sqrtf(denom);

 return denom;

}

#pragma simd private(x) reduction(+:sumx)

 for (i=1; i<nx; i++) {

 x = x0 + (float)i * h;

 sumx = sumx + func(x, y ,xp, yp);

 }

4/12/2013 28

These clauses are
required for correctness,
just like for OpenMP*

func_vec.f(1): (col. 21) remark: FUNCTION WAS VECTORIZED.

 SIMD LOOP WAS VECTORIZED.

y, xp and yp are constant,
x can be a vector

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Clauses for Vector Functions

__attributes__((vector)) (Intel)

#pragma omp declare simd (OpenMP* 4.0 RC1)

Available clauses (both OpenMP and Intel versions)

• LINEAR (additional induction variables)

• UNIFORM (arguments that are loop constants)

• PROCESSOR (Intel)

• VECTORLENGTH (Intel)

• MASK / NOMASK (Intel)

• INBRANCH / NOTINBRANCH (OpenMP 4.0 RC1)

• SIMDLEN (OpenMP 4.0 RC1)

• ALIGNED (OpenMP 4.0 RC1)

29

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Elemental Function

__declspec(vector)
void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(int* result, const int* a, const int* b,
 std::size_t size)
{
 for (std::size_t i = 0; i < size; ++i) {

 kernel(result[i], a[i], b[i]);
 }
}

30

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Threads and Vectors

__declspec(vector)
void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(int* result, const int* a, const int* b,
 std::size_t size)
{
 cilk_for (std::size_t i = 0; i < size; ++i) {

 kernel(result[i], a[i], b[i]);
 }
}

31

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Section

Correspond to vector processing (SIMD)

• Explicit construct to express vectorization

• Compiler assumes no aliasing of pointers

Synonyms

• array notation, array section, array slice, vector

Syntax

• [start:size], or

• [start:size:stride]

• [:]  all elements*

Intel Confidential 32

* only works for array shapes known at compile-time

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Section Operators

Most C/C++ operators work with array sections

• Element-wise operators a[0:10] * b[4:10]
(rank and size must match)

• Scalar expansion a[10:10] * c

Assignment and evaluation

• Evaluation of RHS before assignment a[1:8] = a[0:8] + 1

• Parallel assignment to LHS ^ temp!

Gather and scatter

 a[idx[0:1024]] = 0

 b[idx[0:1024]] = a[0:1024]

 c[0:512] = a[idx[0:512:2]]

33

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Section Reductions

Reductions

Built-in

__sec_reduce_add(a[:]), __sec_reduce_mul(a[:])
__sec_reduce_min(a[:]), __sec_reduce_max(a[:])
__sec_reduce_min_ind(a[:])
__sec_reduce_max_ind(a[:])
__sec_reduce_all_zero(a[:])
__sec_reduce_all_nonzero(a[:])
__sec_reduce_any_nonzero(a[:])

User-defined

result __sec_reduce (initial, a[:], fn-id)

void __sec_reduce_mutating(reduction, a[:], fn-id)

34

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Other Operators

Index generation

a[:] = __sec_implicit_index(rank)

Shift operators

b[:] = __sec_shift (a[:], signed shift_val, fill_val)

b[:] = __sec_rotate(a[:], signed shift_val)

Cast-operation (array dimensionality) e.g.,

float[100]  float[10][10]

35

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Array Section

Array section:

y[0:10:10] = sin(x[20:10:2]);

Corresponding loop:

for (int i = 0, j = 0, k = 20;

 i < 10; ++i, j += 10, k += 2)

{

 y[j] = sin(x[k]);

}

Intel Confidential 36

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Launch Elemental Function

__declspec(vector)
void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(int* result, const int* a, const int* b,
 std::size_t size)
{

 kernel(result[0:size], a[0:size], b[0:size]);

}

37

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Threads and Vectors

__declspec(vector)
void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(int* result, const int* a, const int* b,
 std::size_t size)
{
 cilk_for (std::size_t i = 0; i < size; ++i) {

 kernel(result[i], a[i], b[i]);
 }
}

38

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Threads and Vectors (2)

__declspec(vector)
void kernel(int& result, int a, int b)
{
 result = a + b;
}

void sum(int* result, const int* a, const int* b,
 std::size_t size)
{
 cilk_for (std::size_t i = 0; i < size; i += 8) {
 const std::size_t n = std::min(size - i, 8);
 kernel(result[i:n], a[i:n], b[i:n]);
 }
}

39

4/12/2013

* For example, the remainder could be also handled separately (outside of the loop).

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Matrix-Vector Multiplication

void mxm(double* result,
 const double* matrix, const double* vector,
 std::size_t nrows, std::size_t ncols)
{
 cilk_for (std::size_t i = 0; i < nrows; ++i) {
 const std::size_t start = i * ncols;
 result[i] = __sec_reduce_add(
 matrix[start:ncols] * vector[0:ncols]);
 }
}

40

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fixed-Size Array Sections

Long Vector Coding

• Syntax: A[0:size] where
size is only known at
runtime

• VLA or otherwise
allocated memory

• Referencing intermediate
results req. scratch mem.

• Solution: stream “infinite”
length data through a
fixed-size local array

Short Vector Coding

• Syntax: A[0:N] (or A[:])
where N is known at
compile-time

• Local array (scope) can be
entirely optimized away

• Referencing immediate
results is light-weight

• No real memory
consumption

41

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Non-temporal Streaming Stores

• Store instruction-hint to leave data as hinted

• Load instructions may be hinted as well

#pragma vector nontemporal(result)

for (int i = 0; i < N; ++i) {

 result[i] = a[i] + b[i];

}

Intel Confidential 42

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Prefetches - automatic

• Compiler prefetching is on by default for the
Intel® Xeon Phi™ coprocessor at –O2 and above

• Prefetches issued for regular memory accesses inside loops

• But not for indirect accesses a[index[i]]

• More important for Intel Xeon Phi coprocessor (in-order)
 than for Intel® Xeon® processors (out-of-order)

• Very important for apps with many L2 cache misses

• Use the compiler reporting options to see detailed diagnostics
of prefetching per loop

 -opt-report-phase hlo –opt-report 3 e.g.
Total #of lines prefetched in main for loop at line 49=4
Using noloc distance 8 for prefetching unconditional memory reference in stmt at line 49
Using second-level distance 2 for prefetching spatial memory reference in stmt at line 50

 -opt-prefetch=n (4 = most aggressive) to control

 -opt-prefetch=0 or –no-opt-prefetch to disable

43

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Prefetches - manual

• Use intrinsics
 _mm_prefetch((char *) &a[i], hint);

 See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)

 MM_PREFETCH(A, hint) for Fortran

• But you have to figure out and code how far ahead to prefetch

• Also gather/scatter prefetch intrinsics, see zmmintrin.h and
compiler user guide, e.g. _mm512_prefetch_i32gather_ps

• Use a pragma / directive (easier):
 #pragma prefetch a [:hint[:distance]]

 #pragma noprefetch

 !DIR$ PREFETCH A, B, …

• You specify what to prefetch, but can choose to let compiler
figure out how far ahead to do it.

• Hardware L2 prefetcher is also enabled by default
• If software prefetches are doing a good job, then

hardware prefetching does not kick in

44

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Memory Prefetches: Pragma Syntax

#pragma prefetch variable[:hint[:distance]]
 CDEC$ prefetch variable[:hint[:distance]]

• Variable: array / pointer

• Hint: 0 – non-temporal (streaming store)
 1 – temporal (via cache hierarchy)
 2 – temporal (1st level cache)
 3 – temporal (2nd level cache)

• Distance: # elements to be prefetched ahead

• Pragma is applied in front of a loop

• Similar: pragma vector nontemporal(variable)

45

4/12/2013

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Memory Prefetches

Make prefetches specific!

#if defined(__MIC__)

pragma prefetch a:1:16

#endif

 for (int i = 0; i < N; ++i) {

 result += a[i];

 }

Intel Confidential 46

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Prefetch Distance

Make the distance a safe constant…

{

#define MYFUNC_PF_N 16

pragma prefetch a:1:MYFUNC_PF_N

 for (int i = 0; i < N; ++i) {

 result += a[i];

 }

#undef MYFUNC_PF_N

}

Intel Confidential 47

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Auto-tune prefetch distance

#pragma isat tuning name(prefetch) \
 scope(S1_BEGIN,S1_END) measure(S1_BEGIN,S1_END) \
 variable(d1,range(1,8,1,pow2))

void sum(int* result, const int* a, const int* b,
 int size)
{
pragma isat marker S1_BEGIN
pragma prefetch a:1:d1
pragma prefetch b:1:d2
 for (int i = 0; i < size; ++i) {
 result[i] = a[i] + b[i];
 }
pragma isat marker S1_END
}

48

4/12/2013

* http://software.intel.com/en-us/articles/intel-software-autotuning-tool/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Other Optimizations

• Pragma unroll(factor)

• Increase factor until no additional benefit can be
measured: 1, 2, 4, 8, …

• Excessive unrolling may increase register pressure

• Commonly discovered (slow) code patterns

for (int i = 0; i < M; ++i) {

 for (int j = 0; j < N; ++j) {

 dst[i] += src[j];

 }

}

Intel Confidential 49

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Example: Reduction

for (int i = 0; i < M; ++i) {

 float sum = src[0];

 for (int j = 1; j < N; ++j) {

 sum += src[j];

 }

 dst[i] = sum;

}

Intel Confidential 50

Thank You

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

53

4/12/2013

