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Population: 30 million

Capital: Tashkent (more than 2 million)

Area: 447,400 sq km (172,700 sg miles)

Major language: Uzbek, Russian, Tajik TZW Cvf;ﬁvw 'let

Major religion: Islam

Life expectancy: 66 years (men), 72 years (women)

Monetary unit: 1 S = 2000 uzbek som

Main exports: Cotton, gold, natural gas, mineral fertilizers, ferrous
metals, textiles, motor vehicles




Introduction

The experimental knowledge about fusion-fission reactions at sub- and near-
barrier energies has grown considerably in the last twenty years.

The theoretical models are able to reproduce and predict the main features
of such processes, even the cross sections for synthesis of superheavy
elements estimated more or less to the experimental data. But properly
understanding the fusion dynamics for heavy systems requires many more
ingredients. The need for more experimental data to disentangle various
concurrent effects, is clearly felt. A full understanding of all steps of the
reaction dynamics is very important for the challenging issue of superheavy
elements production and new isotopes far from the valley of stability.

The mixing of deep-inelastic collisions and quasifission products, as well as the mixing
of the quasifission and fusion-fission products in the experimental data causes the
difficulties in the theoretical estimation the hindrance to complete fusion of nuclei.




Topicality of the problem

Experimental data are subject to study and to be interpret. The main problem is
to install universal physical laws to describe and to make conclusions about the
reaction mechanism on the base of measured mass, charge, energy and
angular distribution of products.

I_I

Theory: nucleus-nucleus interaction potential, friction coefficient, deformation parameters of
interacting nuclei and coupling of the relevant degrees of freedom leading to dissipation of
kinetic energy and angular momentum.

Complete microscopic calculations seem not to be possible if we would like to describe
experimental data observed for different characteristics of reaction products. There are strong
correlations between collective motion of nuclei and microscopic degrees of freedom of
nucleons. Therefore, there is not established nature of friction coefficients and tensors of
masses which are universal for the wide energy range of collision and large amplitude of
collective motion. .



Reaction types in heavy ion collisions

For collisions near the Coulomb barrier, R is the most important collective variable.

It is used to classify collisions into several types, depending on its time evolution.

If the nuclear surfaces never touch, we have either elastic scattering or Coulomb
excitation .

If the surfaces barely touch, we have a grazing collision .

If the nuclei make firm contact with each other, but still separate afterwards, we have
a deeply inelastic collision or quasifission .

Finally, if the nuclei become sufficiently attached to each other, they may form a
compound nucleus in a fusion reaction .

If the angular momentum and total charge are both very large, this combined nucleus
may not live long enough to reach its equilibrium shape before it fissions into two or
more large fragments in incomplete fusion .

Of course, in all these collisions except elastic scattering , other collective degrees of
freedom also come into play; in the fusion reactions and incomplete fusion processes,
R eventually loses not only its dominant role but even its meaning as the nuclear state
evolves in time until the projectile and target nuclei can no longer be distinguished.



Basic quantities for colliding nuclei
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The density distributions of the nuclei '°0 and ?°Pb when their centers
are separated by the strong absorption radius appropriate for
scattering at energies between about 100 and 200 MeV
some information about its slope [ 1821. This is the situation
pertaining to much of heavy-ion elastic

M.E. Brandan, G.R. Saichier | Physics Reports 285 (1997) 143-243
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DIFFERENTIAL CROSS SECTION IN CM?STERAD™

Validity of the mean-field approximation based on the
analysis of the experimental data

1
tn B {95'539""""110“"’“ The differential cross section
s 4 a=053fm
5 . " observed for electrons of 153 MeV
I gz- A (Ra=687fm=118A""fm) scattered from a gold target. It is
% N . seen that, for the angles studied, the
g* L a2 & s 8 wr (UNTSOFfm} intensity of the scattering is at least

an order of magnitude weaker than
for a point charge of Z = 79. The
angular distribution exhibits mild
oscillations characteristic of
scattering by a system with a rather

well-defined radius The experimental
EEE‘HEREHS 3; 153 Mev data and the theoretical analysis are
taken from B.Hahn, et al. Phys. Rev.
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inelastic scattering
direct reactions

grazing collisions

e

close collisions

distant collisions _
damped reactions

elastic (Rutherford) scattering

Coulomb exlcitation

Figure 1 Classes of heavy-ion collisions associated with different values of impact pa-
rameters.



Dependence of energy distribution of reaction products
on the initial angular momentum at given beam energy
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Elastic scattering and Coulomb excitation.

Elastic scattering is the main reaction channel of heavy-ion
collisions at all incident energies and, thus, it is a useful
experimental tool for study of nuclear structure and nucleus-
nucleus interaction potential.

In the elastic scattering channel both nuclei remain in their
ground states because total energy and momentum are conserved.

P +P, =FR'+PF’

E,+E,=E'+E°
At above barrier incident energies and when distances between
colliding nuclei reaches small values a considerable part of incoming

flux goes away from the elastic scattering into the other reaction
channels. due to strongly coupled to other degrees of freedom.



Elastic scattering and Coulomb excitation

For all nuclear particles, with the exception of neutrons, the Coulomb
repulsive interaction dominates at large distances: . When nuclei
approach each other, the attractive nuclear forces have an effect.
Resulting nucleus-nucleus interaction potential looks as shown in Figure.
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Grazing angular momentum £,

Inelastic processes play a large role if the projectile's energy is large
enough to surmount the Coulomb barrier and the angular momentum
of the relative motion is small enough for the nuclear surfaces to
touch: then the strong-interaction forces come into play.

The distance of closest approach R, for a Coulomb trajectory of angular
momentum £fi and energy E is given implicitly by

L(£+1)h?% | Z,Z,e?
= — + :
2UR, R,
The value of £ for which R is equal to the sum of the nuclear radii
R, =19 (A11/3 + A21/3) is called the grazing angular momentum £ ,.
It can be find

000+ 1) = 2u(E — Ure? (A, /3 + ,421/3)2 i




Rutherford’s formula describes
elastic scattering

2
dURuther . (lezez) 1
2 .
d) 2V sin? '9/2

The value of L for which the closest distance between nuclei is equal to the sum
of the nuclear radii

is called grazing value of the orbital angular momentum.



Grazing collisions

Grazing collisions are board between elastic and inelastic
collisions. Geometrical cross section for the reactions dominated
by the strong nuclear interaction may be estimated by adding
the contributions to the absorptive cross section. The grazing
angle is found from the condition between the reaction cross
section and Rutherford cross section:

OR (ng)
ORutherford (egr)

=1/4

An effective nuclear interaction radius R can be determined
based on the total reaction cross section ¢ and the observed
quarter-point angle 6, /. , defined as the angle which satisfies a

condition Oelastic / GRutherford=1/4'



The scattering angle as a function of impact parameter b, or
angular momentum (€ +1/2)% = P b, is called the deflection
function O(€) and is shown on the right figure. Trajectories with
positive O, in this case the peripheral ones that are dominated by

the Coulomb repulsion, constitute nearside scattering, while those
drawn to negative O by the attractive nuclear potential represent

far side scattering.
150 M.E Brandan, G.R. Sartchier! Physics Repr}rr.r 285 (1997 ) 143-243
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Fig. 3.1. Left: classical trajectories that lead to Coulomb (C) and nuclear (N) rainbows. Right: the corresponding deflection
function (from [184]).



Theoretical distinguish of the rainbow from the differential
cross section depending on angular momentum

Classical differential cross section becomes infinitive at

0=0,, B
do . do dL do(dé,
—— (classical) = = :
dé dL dg, dL\ dL

because many classical trajectories lead to the same
scattering angle,

dHcI(L) =O QCI(Ll):(9C|(L2):‘90I(L3):---

dL

Since the flux of incident particles is smoothly distributed
in the angular momentum L and do/dL is finite number.




Classical trajectories, deflection function, and differential cross section of
3He elastic scattering by '#C target at beam energy of 24 MeV/nucleon
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Fig. 3. (a) Classical trajectories of “He projectile scattered by *C target at beam energy of 24 MeV/nucleon. Dashed line
corresponds to the nuclear rammbow impact parameter. The absorptive region (non-zero values of imagmary part of the op-

tical potential) 15 shown by dashed circle. (b) Classical deflection function. Coulomb (t?c 72 +2°) and nuclear
(ﬁﬁr =2 —677) rainbow angles are shown (c) Differential cross section of *He elastic scattering by *C at energy 24

MeV/u. Doted and dashed curves show the contribution of the Coulomb and nuclear rammbow. Solid curve 1s the result of
quantum calculation performed within the optical model.



Appearance of inelastic collisions in the angular distribution of
the elastic scattering

For larger £, the deflection angle is smaller because the
Coulomb trajectories keep the nuclei farther from each other:
b > (R; + R,) , where R, and R, are radii of colliding nuclei.

For smaller £, the deflection angle is reduced because the
attractive nuclear force pulls the nuclei together, reversing the
deflection due to the Coulomb force. 6, is called the rainbow

angle.
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Atmospheric rainbow with both the primary and secondary rainbows and in the insert the
elastic 10+1°0 scattering data as function of momentum transfer measured at different
laboratory energies.

W. von Oertzen W, et al. Europhysicsnews 31 (2000) p.5; Acta Physica Polonica B
33 (2002 )93.




Atmospherical Rainbow=Refraction+Reflection+Refraction
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of outgoing light rays
increase due to thickening
after reflection and refraction
in the drop of water.




The interference of the refractive nucleus-nucleus scattering
gives rise to the nuclear rainbow which is similar to the
atmospheric rainbow.

point



Absorption of elastic channel partial waves

Any excitation of colliding nuclei takes out them from the
elastic channel. Such decreasing of in-coming flux (number of
elastically scattered particles) can be simulated by additional
Imaginary (absorptive) potential 1W(r), 1W(r) < 0 and
IW(r — o) —0.

This potential defines the mean free path of relative motion
of nuclei:

Acee ==V 2W (1)

which, in turn, defines the probability for the nuclear system
to remalin In the elastic channel .



Differential cross section for elastic scattering

The differential cross section do (£2) for elastic scattering is defined as the ratio
of the asymptotic probability current flowing radially nto an element of sohd angle
dQ = sinfdfdy in the direction of the solid angle © = {6, ¢}, over the probability
current density of the incident wave,

probability current into d€2 in the direction 2

do () = (1.13)

probability current density of the incident wave

Vi
The asymptotic current flowing into d2 is the current through the area R2d$2 at a
large distance R from the scattering centre (cf. Fig. 1.1). It1s given by formula (1.12)
with r = R. Together with the current density of the incident wave (1.11) the definition
(1.13} yields for the differential cross section per unit solid angle the formula
do Jr Rz 3
==— = |f(D (1.14)
d Jin|
For a spherical potential the scattering solution ¥ (r) 1s symmetric about the z-axis, 1.e.
independent of the azimuthal angle . The scattering amplitude 1s thus a function of £
only, f(Q) = f(6).
P. Frobrich, R. Lipperheide, Theory of Nuclear Reactions, Clarendon Press. 1996




Estimation of nuclear radius by the elastic scattering of neutrons

Incident beam of neutrons is described by a plane wave which is expended in the
angular momentum eigenstates (we neglect spin)

. VIA . .
elkZ ~ \]i_;z \/23 + 1i€+1[e—l(kr—€n) _ e+l(kr—€n)]Y€O(9)
£=0

The scattering process modifies the wave function at small r; in turn this leads to a
change of the outgoing wave far away from the target nucleus.

eikZ ~ \Iﬁ_fz \/Zf + 1i€+1[e—i(k‘r—€7'[) — 1 e+i(k7‘—€7t)]y£0(0)
£=0

n is the amplitude of the outgoing wave and it characterizes the scattering process

—ikr

p(r) = e" +£(0) —



Nearside and farside scattering

The significance of the terms nearside and farside is perhaps more
obvious if one looks at the trajectories that can contribute to a

given scattering angle, as indicated in Figure
M.E Brandan, G.R. Satchler | Physics Reports 285 (1997} 143-243

into two parts by using the partial-wave expansion

N
f(O) =i TZ\/(ZK +1) (1—-17,)Y2(0)
¢
Its square is differential cross section for elastic scattering

(G2)erlr @) 17



It is known that the probability of penetration
is one-half at the top of an inverted harmonic-o0s-
cillator potential. It is therefore convenient to
define the interaction barrier for the /th partial
wave as the energy E; at which the absorption
probability P(F;, ) is one-half. While such a def-
inition is model independent, it assumes a sim-
ple physical meaning in the ingoing-wave strong-
absorption model® with parabolic barriers.



Interaction barrier as a threshold

In charged-particle nuclear reactions, it is of
interest to measure the height of the barrier be-
tween the interacting nuclei. Such a measure-
ment provides information on the fusion process,’
which is an important intermediate step in the
production of superheavy nuclei by heavy-ion re-
actions. It may also facilitate the study of distor-
tion effects?® "¢ and of the dependence of the barri-
er height on the charges and shapes of the inter-
acting nuclei.”



With such a definition, the barriers can be
readily obtained by analyzing the elastic scatter-
ing or reaction cross-section data with an opti-
cal model or by parametrizing the phase shifts,
For a given incident energy E, one finds the val-
ue of [, for which the absorption probability is
given by 1-17,,1>=3. It can then be said that the
interaction barrier for the /,th partial wave is
the incident energy E. If data are available for
different energies, the interaction barrier for
various values of / can be obtained.



Of particular interest is the interaction barrier
for the s wave which is traditionally called the
“Coulomb barrier.” We wish to present in this
article another way to measure this barrier by
employing a simple analytic expression for the
total reaction cross section obtained in the ingo-
ing-wave strong-absorption model.



Nucleus-nucleus interaction potential

We consider two nuclei with uniform charge
distribution whose shapes are specified by the
surfaces

Ri('ﬂ @) = Riﬂ{l "'B-!jyzu)s i=1,2 (1)

1

with R;; = 1.2 A} fm. A straightforward calcula-
tion shows that when their centers are separated
by a distance 7 and their symmetry axes are
parallel, the electrostatic potential energy is
given up to the second order in g8 by [13]



Nucleus-nucleus interaction potential

Ve (R0, )= 41t e’

yhle g ( T/ZZZ:R VP, (cosa )+322:R2[ VP, (cosa )]2
R 2071_ Oi 2 i 771_ — oi/72 ' 2 i

=1

Vet (Rioy 0, )= jPEO)(r R)feff [pi()) +p(0)],0§0)(r)d3r

,Ui(O)(r’ Ri 0,0 ’IBZ(i) )= {1_,_ exp{r B Ri (t)’_ Roi(1+ﬁ§i)Y20(9i i )ﬂl

d

_ e 10+

Vrot 2
2u[R(oy,a, )]




Dynamics of capture of projectile by target-nucleus

Ocap (Elansls &1 ,)= (2L +1) T(Ejy, L o 1)

T(Ey Liog,0,)= (1, 1f L ;, <L<L

dyn

O,if L<L,,orL>Ly,
Ly @nd L., are determined by dynamics of collision and calculated by
solution of equations of motion for the collision trajectory:
d(u®R) ., Rpy=_YR)_ge H(ER)

dt OR OR

dL
E = VH(R) R(t)[@R (t)_ 6)1 Rleff B 6)2 R2eff ]

_J.0° 4 ‘]1912 . J26’22

2 2 2

LO=JRH+\]1H1+J2H2 , Erot



Description of the nucleus-nucleus collision at energies < 10A MeV
as the 3 stage process.
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Partial cross sections of compound nucleus (CN), fusion-
like (FL), damped (D), quasielastic (QE), Coulomb
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Figure 39. Schematic illustration of the / dependence of the partial cross section for com-
pound-nucleus (CN), fusion-like (FL), damped (D), quasielastic (QE), Coulomb-excitation
(CE), and elastic (EL) processes. The long-dashed line represents the geometrical partial cross
section do/dl = 2wX?l. Vertical dashed lines indicate the extensions of the various / windows
in a sharp cutoff model with the characteristic / values noted at the abscissa. Hatched areas
represent the diffuse / windows assumed in a smooth cutoff model.
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. Velocity filter

-y

he reaction products leave the target with velocities which are smaller
than the velocity of the projectiles passing the target without
interaction. This is due to the conservation of momentum:
The heavy evaporation residues have the same momentum as the
light projectiles and therefore less velocity. The velocity of the
compound nucleus (V) is much smaller than velocities of other
products.

Ven = IM/(M+M)TV,
A velocity filter exploits this fact to separate the reaction products



Velocity filter

The comparison of the (magnetic) Lorentzian force and the electric
force of perpendicular magnetic and electric fields (crossed fields)
yields a velocity dependence in the sense that for each velocity v,
a combination of forces can be found with a resulting force F,:

I

I:mag = I:el x4 I:tot =0



Time of flight detectors
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Position-Time Correlation
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Excitation functions of
the evaporation residue
cross section at synthesis
of superheavy elements
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Capture and fusion cross sections for the 48Ca+238U reaction.

101 W.Q. Shen et al Phys.Rev. C36.
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Fig.l. Comparison the calculated excitation functioms of capture (dashed-dotted curve)
and fusion (solid curve) with the ones extracted from the experimental data for capture
(dashed curve with open circles from [14], dashed curve with open triangles [15]) and
fusion (dashed curve with solid circles from [14], dashed curve with solid triangles from
[15]). The upper abscissa axe shows excitation energy of compound nucleus.

G.G. Adamian, G. Giardina, A.K. Nasirov, in Cont. of "XIV Int. Workshop
on Nuclear Fission" Physics, Obninsk, 1998, Russia, 2000



Capture and fusion cross sections for the 48Ca+2328U reaction.

Yu.Ts Oganessian et al,Phys.Rev.C 70 064609 (2004)
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Results of calculation and comparison of them with the experimental
data for the “cold” ®*Ni+?%®Pb and 79Zn+2%3Pb reactions.
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O ER (ELab ’L) :<Gcap(ELab 1L) I:)CN(ELab ’L) Wsurv (ELab ’L )>

Gcap(ELab ’L) > CTcap(ELab 1|-") : quis > quis
I:)CN(ELab ’L) > I:)CN(ELab ’L): Bfus < Bfus
Wsurv (ELab’L) < Wsurv (ELab 1L): E*CN > E*CN

SHE experiments showed: o (E;) > og(E))

But recent experiment 4Ca+238U showed opposite ogr (E;) < ogr(E,)



The estimation of the nucleus radius by the

elastic scattering of neutrons
The diffraction pattern of neutrons scattered from nuclei. The
classical turning point for collision with momentum p=7k and
angular momentum 7€ occurs when

k= €(€+1)/R%= (8+1/2)°/R?

We suppose that neutrons which pass within a distance R of
the nucleus are absorbed then there will be not outgoing
wave for small angular momentum,

Ne =0 for{3<kR-%,

while for large angular momentum, the outgoing wave will be
as in the plane wave:

Ne =1 for{’,>kR-%



The estimation of the nucleus radius by the
elastic scattering of neutrons

Thus the cross section is found by

do 1 |R=v2 . 2
o1 > J20+1Y ()
/=0

If kR is small the sum has only a few terms and we have small cross section; if kR is large
we may use the analytical approximation for the spherical harmonics,

for large 6¢€: _
Jo_ sm[(€+%)0+%}

/ -
for small 6€: z~sing

YO~ (2‘2—”)(1—6(“1)6%)

T

Then the sum may be is approximated by the integral

_ e 2
do _ 7 kRJ'UZdE 2€+1sin[(€+%)9+%}

dQ k| ! 7z sine




The estimation of the nucleus radius by the
elastic scattering of neutrons

For large values of RkU>>1

2
do _ 22R_ cos” (Rk9+£j
dQQ zk@°siné 4

For small values of Rki<<1

a2 (%))

Estimations showed that cross section has maximum at the
forward direction and its minimum is at angle

51

Omin = o 15 At k=2 fm™, we have R=7.5 fm for Pb



Total cross section of elastic scattering

The differential cross section

do
ds

is now a double sum over the angular momenta /, in which the contributions of different
angular momenta interfere,

= /@O (1.40)

do
dﬂ 4k ?

; Z Q21+ D21 + 1)(S; — 1)(S} — 1) Pi(cos8) Pp(cosB).  (1.41)
=0

The total elastic scattering cross section (1.15) s obtained by integrating expression
(1.41) over angles. Using the orthogonality relation (1.23) for the Legendre polynomials
we find

do
O = 27T j:ld{c:us ) =g = kz ;(EI + DS — 17, (1.42)
where S€=82i6{’ , SO cross section is determined by phase shift which depends

on the peculiarities of the interaction potential.

A. Messiah , Quantum Mechanics, Vol. 1.
P. Frobrich, R. Lipperheide, Theory of Nuclear Reactions, Clarendon Press. 1996



Quasielastic transfer in the 136X e +%Ni reaction

s i

M. Sefarraza, et al., T T S 13

Phys.Rev. C 55 (1997) p.2541 103

Angular distributions normalized to
Rutherford scattering for the “elastic”

and low-lying (2* and 4*) inelastic
excitations of the target and projectile.

The bold curve corresponds to the sum .
of the elastic and inelastic distributions ,g':
of the coupled channel Born

approximation calculation.

(.01

An effective interaction radius R can be
determined based on “quarter-point
recipe” [Bass] which assumes

0.CHk ]

O'R(ng) =1/4

ORutherford (Ogr) —

-H:I ]LH]IIEI
BI.'.III.':d'EE}




Main characteristics of elastic collisions and
rainbow scattering

The product mass and charge numbers are very close
or the same values as ones of the projectile and target
nuclei;

Angular distribution of the reaction products extends
in the wide range 0 < 8 < m /2 but its maxima are
placed near grazing angle and rainbow angles;

Energy loss is small and consists some MeV’s;

The cross section of elastic scattering is very large in
comparison with inelastic and deep-inelastic collisions
which take place at smaller values of angular
momentum.



Classification of reactions by impact parameter.

quasi-elastic scattering
direct reactions

grazing collision

Quasifission

fusion

deep-inetastic collision

distant collision

b=L /P, is an impact elastic scattering
parameter, where L is the Coulomb excitation
orbital angular momentum and

P is momentum of relative
maotion



Semiclassical interpretation of potential scattering

 The wavelengths associated with heavy-ion scattering are
usually short enough, and consequently the number of
partial waves involved is sufficiently large, that use of the
language of semiclassical trajectories becomes meaningful
and very useful for understanding the characteristics of the
scattering.

 The presence of absorption plays a very important role in
determining the outcome of the collision. but in practice
does not destroy the underlying trajectory picture.
Qualitatively, absorption can be thought of as simply
damping the flux as the system traverses the classical path.

* Description of the deep-inelastic collisions allows to analyze
the behavior of interacting system formed at trajectories
corresponding to the absorbed partial waves.



Heavy ions are many body system

Atomic nucleus is a qguantum object
which consists from protons and
neutrons binding by strong
nucleon-nucleon interaction. The
reaction taking place in collisions
of atomic nuclei should be
described adequately. The
application of classical picture
requires consideration of nucleus
as localized wave packets. The role
of the electron shell is not so
important in nucleus-nucleus
interaction because of smallness of
the electron’s mass m_/my=0.0005

P b Nuckus

2}  Proton (Posiieehy charged)
v [eutnon

+ Hectron (MNegobvely charged)



Basic quantities for colliding nuclei
E. .., L=[bxP]

A,

Ec.m.=EIab AT /(AP +AT)

0.17 fm?3 0.17 fm-3




Adequacy of the classical description the reaction dynamics
in heavy ion collisions

The spread of energies in a wave packet of width AR may be estimated by

APZ
AE = — |
2M

. . . MM
where M is a reduced mass of the colliding nuclei M = ——2

. From the

My+M,
Heisenberg uncertainty principle for the coordinate and momentum we have

h
APAR > 5
that allows us to find connection between widths of energy and space
h? _ (hc)? ~ (197)’(MeV fm)* _ 5 MeVfm?
2-4 M(AR)? 8Amp c2(AR)?> — 8A939MeV(AR)2 —  A(AR)?

In the last expression A = 4142
have A=14 and

coordinate AE =

YRR Thus, for example 20+298Pb reaction we
1 2

AE(AR)?= 0.3 MeV fm?2.

As light as oxygen may be localized to within 0.5 fm by a wave packet with an
energy spread of 1 MeV. For heavier ions the energy spread decreases like AL
We conclude that a classical description of the relative motion is appropriate.



The conditions of application of the classical approaches

The most important parameter pertaining to semiclassical considerations is
the reduced wave length A of the system of two interacting heavy ions
h h (1)

P(r)  J2u(E,, -V (r)
Here, uis the reduced mass; P(r)is momentum of relative motion;

A(r) =

E... and V(r) are the center-of-mass energy and the interaction potential,
respectively. The classical approximation is generally valid if the radius R of
curvature of the trajectory to be large %

—1
R (2)

2
The condition for the centrifugal forces is found as ﬂI;/ =|grad V(r)| .
Putting R found here into (2) we have 7&|grad V (r) |

11

Finding |grad V| from (1) we find condition for wave length |grad 7L| ] 1,
which means that the wave transverse size is large in comparison with A .




Application of classical physics to description of
Coulomb scattering in heavy ion collisions

The smallness of the wave length of the relative motion in heavy ion collisions in
comparison with the size of colliding nuclei allows to use the classical physics
presentations to study dynamics of heavy ion trajectory determined by Coulomb

and nuclear forces.
p> 1(1+)r* Z,Z,€°
+ — + =
2 2.ur r
The criterion of application of the classical mechanics to the Coulomb
trajectory is ratio of the wave length of the relative motion to the closest distance
between nuclear centersr. :

E. (4)

A (5)
rmin
r. = lezez X v A
min E '
) 2a 0




Study of the inelastic and deep-inelastic collisions of heavy
lons at Coulomb barrier energies (E,,=5-10 MeV/nucleon)

It is natural that the stronger the absorption, the smaller the
chance to observe the rainbow pattern. Due to the strong
absorption, most of the elastic HI scattering is dominated by the
surface scattering and the information about the nucleus-
nucleus interaction is obtained for peripheral trajectories only.
Here, the term “surface” means the region where the nuclear
forces begin to act strongly. It corresponds to the distance:

R - (41f‘3_|_ 41f3)+&_

ro ~ 1.1 fm,

Values of A between 2 and 3 fm are typical separations at

bombarding energies with E/A =10-20Me\V.
P.J. Siemens, A.S. Jensen, Elements of Nuclei , Addison Wesley Publ. Comp. 1987



Grazing angular momentum £,

L2 Lgr LS Lgr L<<t

Philip J. Siemens and Aksel S. Jensen, Elements of Nuclei.
Many- Body Physics with the Strong Interaction, Addison —Wesley
Publishing Company, 1987.



Scheme of setup COMBAS of the Flerov Laboratory of Nuclear
Reaction at Joint Institute for Nuclear Research to register the
binary reaction products in coincidence.

|64

ttp://flerovlab.jinr.ru/Iinkc/eng_l/corset.htm






Dependence of the reaction types on the initial beam energy
and orbital angular momentum.

o
do
_z? /}/
|
A
] s
v =\
v
,‘.( | |
4/
LA EL
i QE||cE
1 D
I
FL \
CN = .:
I\
lcrit If ID lmox ﬂ

Figure 39. Schematic illustration of the / dependence of the partial cross section for com-
pound-nucleus (CN), fusion-like (FL), damped (D), quasielastic (QE), Coulomb-excitation
(CE), and elastic (EL) processes. The long-dashed line represents the geometrical partial cross
section do/dl = 2wX*l. Vertical dashed lines indicate the extensions of the various / windows
in a sharp cutoff model with the characteristic / values noted at the abscissa. Hatched areas
represent the diffuse / windows assumed in a smooth cutoff model.



Importance of correct separation of fusion-fission fragments
from the quasifission and fast-fission products

‘V(
do p
O :
4@
i 1
] ]
y =
Q
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]
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Well known approach is that angular
momentum distribution allows us to
differ products of reaction channels if
it is possible to estimate key values of

angular momentum, asf ., £, £

do/dL (mblh)
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The total cross section of inelastic collisions

The total cross section for reactions dominated by the strong interaction

(inelastic collisions) may be estimated by expression

T

T
0 yom = EZ(Z{) +1) = 5 (8, + 1
0

2
X TTT 2 (A11/3 + A21/3) (1- UC/E)
This is called the geometric cross section.

Trajectories with angular momenta larger than fgr will still lead to Coulomb
scattering. Trajectories with angular momenta near fg,, are likely to lead to
inelastic reactions, but they may also lead to elastic scattering.

The elastic scattering angle corresponding to these trajectories will be
reduced by the attractive nuclear force between the target and projectile.
Thus there is, classically, a maximum angle of deflection U, corresponding to a
Coulomb trajectory with angular momentum just larger than {’gr -



Deep inelastic collisions : macroscopic view seems to be OLD ?!

diffusion effects on nucleons

66
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angular dependence of energy loss
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Encrgy-integrated mass spectra for the reaction ***U+**Ca measured at four incident energies

(4.7, 49, 52, 5.7 MeV/u), with two ionisation chambers in coincidence.
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Energy-mass distribution of the reaction products in
the 238U (7.5 MeV/u) +3°Cl reaction
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Mixing of the distribution of fragment masses versus total kinetic
Y
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W.Q. Shen et al (GSI) Phys.Rev.C36, 115 (1987)



Charge and mass transfer from light ®*Ni to 238U is hindered in
the ®*Ni + 238U reaction
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Competition between fusion-fission and quasifission processes in the *25 4+ ™W reaction
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o0
(l = =
opr( E) = Z{ZI + ]}JleifE}W51[1-{E, 1. (1) de 4 5 y W
The entrance channel elfects can be studied [16] by analyzing 2y =
the partial fusion cross section JEUS(E}, which is defined by QU /i e
the expression : '
(0 (0 _ 7
*':"'-fus'li".‘—:::II - Jcapmre{E}PCNfE.”. (2) S
lcrii 2 4o Znox

The theoretical cross section for capture includes the contri-

butions of all fragment yields from full momentum transter Ll S — FEv—
- 14 .
reactions: N
= 12 —_ 151 /-\\
= - 144 ;o
Jcap{Ec.m,} = opgr(Ecm.) + or(Ecm.) + f}_qf{ Ecm.) E 1: """ 126 ]
- e L
=} P !
+ Ofast fission (Ec.m.)s (3) £ =6 o |
4 T Y
where ogr. of. ogr. and Ofasfission are the evaporation residue, 5 i
fusion-fission, quasifission, and fast-fission cross sections, Oberfiit i Y e
o} 20 40 60 80 100 120 140 160

respectively. L ()



About ambiguity of separation of fusion-fission (ff) and quasifission (qf)
products at the analysis of experimental data.

The pure cross section of the complete fusion must include
only evaporation residues and fusion-fission cross sections,
(pure) _
Tns = OER + Of. (4)
The experimental value of ops 18 reconstructed from
the detected cross sections of fissionlike fragments &g and
evaporation residues ogg:
(exp) - -
Ofus — Off + TER. (D)
But fissionlike fragments can be a mixture of the contributions
of fusion-fission (o). quasifission (ogr). and fast-fission
(Trast fis ) products:

Of = Of + Tgf + Ofast fis- (6)

The ratio between contributions of different binary channels
i1s a function of the initial values of the beam energy and the
orbital angular momentum for the given reaction.



Fission fragment angular distribution for the 32S+18W reaction. Incident energies are
shown in the figure. The experimental data are shown with the fitting curve, which is used to determine the
anisotropy A,,, of the fragment angular distribution and mean square values of angular momentum from

these events.
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Interpretation of the experimental data presented as fusion-
fission data in the 32S+18*\W reaction
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Dependence of competition between complete fusion and quasifission on energy and
orbital angular momentum allows us to determine the angular momentum
distribution of dinuclear system and compound nucleus.
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Dependence of competition between complete fusion and quasifission
on energy and orbital angular momentum
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Characteristic Properties of Deeply Inelastic Collisions
and Quasifission reactions

In this section we discuss an experimental evidence is
provided for the characteristic reaction patterns of strongly
damped collisions. Apart from their basic two-body nature
(A+ X = B +Y), other gross properties of these
processes, such as angular distributions, cross sections,
mass and energy distributions, are discussed, with
emphasis on their dependence on the projectile-target
system and the bombarding energy.

The binary nature of the deep inelastic collisions and
guasifission reactions is proved by the experiments where
two reaction fragments are measured in coincidence.

The reaction-product mass distributions are bimodal with
centroids near the target and projectile masses.



Non-equilibrium processes in heavy ion collisions

At A +A,> A/ +A,) usually E;":E,"#2 A, : A (even at fission!).
At thermodynamic equilibrium mustbe T,=T, > E,":E,"= A, : A/

T, =3.46,E"/ A

i=PT

t 10%s
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Theoretical methods to describe multinucleon
transfer reactions at low energies

2. Hamiltonian.

It 1s convenient to start with the hydrodynamical Hamiltonian of the many body systen

written in the form [106]

m 1

H = — [ JR J(R,r)d’
?_2 ‘\7 Ra : : l I
i 8.;.”, / ( :'((Ruarr))) [E';r - 5 / !O(R.a I‘)"E,.-‘“ff(R_, r, I"),()(R, r’)d-‘r"? (ll

which can be presented as sum of components of a dinuclear system consisting from th

separated nuclei:
](Ra I‘) — (r()P + P{))/Qﬂ, + Jin, (12

;‘m(Ra I') — fF(R - I') + ;‘I(r)a
;”(R: I') = pPr (R o I") + !()T(r):



A

2

. P .

v

2/
which consists of the kinetic energy operator and the nucleus-nucleus interaction potential
V(R) = [pp(R =r)v. (R, r)pr(r)d’r. The last two terms in (1.3) describe the internal
motion of nuclei and the coupling between relative and internal motions. The intrinsic

motion of nucleons in the projectile and target nuclei is presented by the Hamiltonian

. m - | X | |
H;, = % / JIF(R - I‘) {)(R? r),)‘l}"(R — I’)fﬁl‘ —+ / ﬁp(R — I‘)"f.\-‘-(_;”'(R_, r, I")f}p(R _ r’)(]';r’
m ) 1 . | |
T % / U(I‘) ﬂ(R_, I') .h'(r)d'}r T / ij(R~ I')"(f.\?“ff(R, r, rl)fjl'(R: rr)d'}r!- (15)



The first and third terms ol this expression corresponds to the nucleon kinetic energy in
projectile and target: the second and forth terms are their potential energy. The Hamiltonian

(1.5) corresponds to a single-particle Hamiltonian of fragments of a dinuclear system

. Ap 7 fi
Hr‘”({) — Z (—!A + ‘P(r - R ) T Z (—!A —|_1‘ ( )) + h‘rt:siduu.ia (16)

— 2m 21

where mean fields Vp and Vi ol nuclei are delined by the nucleon distribution according to

self-consistency condition:

Ve(ri = R(1)) = / p(R —r1)v (R, 1, v')p(R, 1) d’r (L.7)
Vel — R) = 130 {1 4 exp [ ROLZ R
Vi(r) = —1-'(;};!'=Zf'{1 T oxp| ;Bi” -
Vo) = Vo [1 —[].63¥], Vi =V [1+n 6%\—121

Vo =0H3MeV, R; = -rﬂfl,-l"f'li_, ro=124fm, a =0.63fm.

)






Hamiltonian for calculation of the transport coefficients

The macroscopic motion of nucleus and microscopic motion of
nucleons must be calculated simultaneously.

H=H_,+H,., +oV (1)
where
P2
H., = 2 —+ U (R)-for therelative motion of nuclei; (2)
H,ie; ZE,P ra +Zg,T -4_ - fornucleonsof nuclei; 3)
SV = Z 0,; (RN& A +a 8 )+ AD (R)a’a + A (R)A'a - (4)

ip,jr ip,Jp ip.Jp

nucleon exchangebetween nuclei and particle—hole excitations in nuclei;
g; ;. and A% i —matrix elements of nucleon exchange between nuclei and particle—
hole excitations in them caused by meanfield of partner nucleus.



Master equations for the nucleon occupation numbers and
Equation of motion for the relative distance

n M ROl @ M=aa i=PT
m@F;Et):[H(R(t)ﬁ(t))} (6) FT)EE((:P ;P’Ilp’r:lp))
R GO = ORRIGIO)) o
h = ‘ﬁf‘*(R(t»{l—exp(‘ftﬂ in (t)exp(‘TAtj @

n(t) = (t— At + > W, (R(t), AD[A (t—A) -, (t-AD] (9

W, (R(),At) =V, (RM))|", V, (R) =(iV (R)|k)

. G.G. Adamian, et al. Phys. Rev. C53, (1996) p.871-879



Evolution operator for the macroscopic and
microscopic degrees of freedom

is defined by solution of the Schroedinger equation with initial condition
U(t,t)=1:

h 6U (2;1’ I) — I:Iu\(t”l,ti), (|+1’t) U(O)(t|+1’t)U (t|+1’t) (10)

U (t,t) =U (tt) Ut 1),

macC mic
U2, (.6) =o| -4 H REN-6) | U201 =0~ Hu (REN 1))
U’ is defined by coupling term between collective and microscopic variables
. tig
U (t.0.t) = em[ el 5v<'>(R(t»dt]. (1)
ti

A.Messia, “Quantum mechanics” Vol.1



Calculation of the transport coefficients.

The dissipation of kinetic energy of the relative motion occurs due to
interaction between macroscopic and microscopic degrees of freedom. An
estimation of the averaged values of dynamical variables :

< A(t) >=<U (t,t') At")UL(t,t) >, (12)
<V (t) >=R(t) + U + ARO[ Fx (R, ) + Fer (R )] (13)

allows us to obtain expression for the kinetic coefficients:

H :[|-|1+|:|2] + {P—z + U(R) + AU} + [AR (F,,(R) + F (R))] (14)

I 1 \

The s.p. states of
nucleons of dinuclear Relative motion Dynamical forces caused by
system of nuclei interaction of multinucleon systems92



The change of nuclear shape

The change of the nuclear shape was taken into account by solving of equations of
motion for the quadrupole (2+) and octupole (3-) collective excitations in nucleus i
(i=1,2):

dzﬂg) (i) dﬂii) iz |24 +1 Réi) oU (R, B)
1.2 + Vi T + W, = (i)
dt dt A7 D, OR

py

where wA , YA and DA are the frequency, damping and mass coefficients
for the surface vibration multipolarity A4, respectively;

RO is radius of the spherical nucleus. The values of @A and reduced electric-
multipole transition rate BEA are obtained from the Tables in G. Audi, A.H.
Wapstra, Nucl. Phys. A 595, 509 (1995).

The damping coefficient y4 is calculated from the estimation of the coupling
term between surface vibrations and nucleon motion in nuclei



Friction coefficients

2 0 oV, (R, 5,) )
Vz_ihZD“,iZ,j:’knj nk) 4 Idt(t t)eXp T Sln[(g g )(t— t)/h]
(@) -
r-(l‘” :32h257(z“) [(fK_g)z%(f“g }[(”T )+ (5 = A’ ]{1+exp[l T g‘ﬂ

g and g are single particle energies of
components of dinuclear system;

Fj:hlrj

Is awidth of the excited single-particle states
due to residual interaction between nucleons.

G.G. Adamian, et al. Phys. Rev. C56 No.2, (1997) p.373-380
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Comparison of the friction coefficients calculated by the
different methods
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**Fe(480 MeV) + “°Pb
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-
)
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-

yer (1075 MeV s fm™)
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R (fm)

The friction coefficient depends on
the relative distance between centers
of nuclei and increases by
temperature of nuclei.

Dotted curve - Incoming path
Solid curve —— Outgoing path



Angular distribution of the nucleon transfer products in
reaction 193Rh (1°0,1°0)1%Rh at different beam energies.
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Figure 12 Differential cross section for the reaction °*Rh('¢0,'*0)!°*Rh at various
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Deeply Inelastic Collisions & Quasifission
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Figure 11.5 Correlation of energy loss and angular deflection for heavy ion collisions

near the Coulomb barrier. Above: interpretation in terms of classical trajectories for var-
ious angular momenta. Below: Wilczynski plot gives contours of equal d?a/dAdE for the
reaction of ®%Kr on 13°La at 610 MeV laboratory energy. Broken line connects theoretical
energy losses and deflection angles for various angular momentum values (solid points), for
Time-Dependent Mean Field computation of fig. 11.8. [data R. Vandenbosch, M. Webb, P.
Dyer, R. Pugh, R. Weisfield, T. Thomas, and M. Zisman, Phys. Rev. C17 (1978) 1672].

For angular momenta
somewhat less than £,
a part of the energy of
relative motion is
turned into internal
excitation. The most
striking experimental
evidence for this is seen
in the Wilczynski plot
which displays the
doubly-differential cross
section d2%0/ dOdE.
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Dependence of the collision
trajectory on the orbital angular
momentum.
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Polarization of photons from target
remnants in the reaction of 284 MeV
(dots) and 303 MeV (circles) “°Ar on Ag.
The count-rate asymmetry measures the
circular polarization of the photons, shown
as a function of the laboratory energy of
the ejectiles. The ejectiles, whose charges
range from Z =11 to 21, are detected at
35°%in the laboratory, about 10° outside
the grazing angle. Their spectrum is shown
in the upper part of the figure.

[ from W. Trautman, J. de Boer, W. Dunn
weber, G. Graw, R. Kopp, C. Lauterbach,

H. Puchta, and U. Lynen, Phys. Rev. Lett. 39
{1977} 1062 ].



