Introduction to Hard Probes in Heavy Ion Collisions

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

11th Nuclear Physics Summer School Jeju Island, Korea, June 2013

Jeon (McGill)

Jeju 2013 1 / 127



Jeon (McGill)

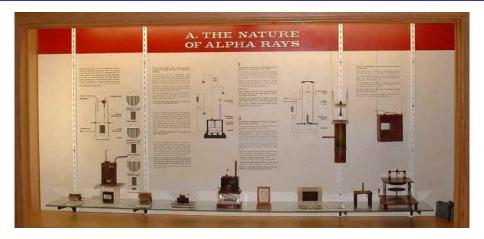
Hard Probes

Jeju 2013 2 / 127



Mr. McGill going home after a hard day's work.

Jeon (McGill)



Rutherford carried out his Nobel (1908) winning work at McGill (1898-1907). His *original* equipments on display

Jeon (McGill)

Hard Probes

- Charles Gale
- Sangyong Jeon
- Björn Schenke (Formerly McGill, now BNL)
- Clint Young (Formerly McGill, Now UMinn)
- Gabriel Denicol
- Matt Luzum

- Sangwook Ryu
- Gojko Vujanovic
- Jean-Francois Paquet
- Michael Richard
- Igor Kozlov
- Khadija El Berhoumi
- Jean-Bernard Rose

Before I begin... Some thoughts I'd like to share

Disclaimer: These are my own thoughts. Everyone is different. Take these with a grain of salt.

- Passion for Physics!
- Communication skill Improve your English
 - Writing skill Writing guide books help A good one: *BUGS in Writing: A Guide to Debugging Your Prose*, by Lyn Dupre
 - Presentation skill Have a look at R. Geroch's *"Suggestions for Giving Talks"*, arXiv:gr-qc/9703019v1.
 - Debate skill Practice thinking in English
 - Social communication skill Read novels (paperbacks are better), watch sitcoms, know the culture, slang, ...

Approach it as if you're writing a story Story <u>Arti</u>

- Introduction Make the reader interested in the rest of the story
- Expanding the story Main characters, main events, conflicts, puzzles, ...
- Resolution Story escalates to the ultimate resolution by a big battle, saved by the heroes/heroines.
- Ending Tie up loose ends. Make the reader want to read the sequel.

<u>Árticle/Talk</u>

- Introduction Make the reader interested in the rest of the paper/talk
- Expanding the point Main physics points, main data, conflicts, puzzles, ...
- Resolution What big physics the new data/theory illuminates/resolves. Saved by the heroes/heroines.
- Conclusion Tie up loose ends. Make the reader want to read the sequel.

On to Physics

Jeon ((McGill)

・ロト ・回ト ・ヨト

• Why do it?

- To study QGP
- Most extreme environment ever created: $T \sim 1 \, \text{GeV}$. This existed only at around 1 microsecond after the Big Bang
- How do we understand it?
 - Theory: Many-body QCD
 - Experimental probes:
 - Soft
 - Hard

- Hard Probes \sim Large momentum/energy phenomena
- pQCD applies We know how to do this
- Produced *before* QGP is formed in the same way as in hadron-hadron collisions
- Difference between *pp*, *pA* and *AA* tells us about the medium.
- Caveat: How well do we know the nuclear initial state?

Medium properties

- What is it made of? Quarks? Gluons? Hadrons?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools
 - Jets
 - Hard Photons

pQCD

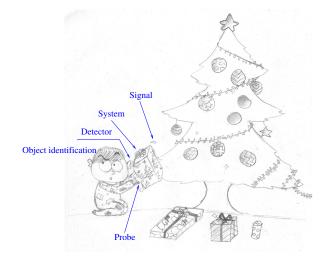
- 2 Jet Quenching
- Hard Photons

イロト イポト イヨト イヨ

• Early hard probe experiments

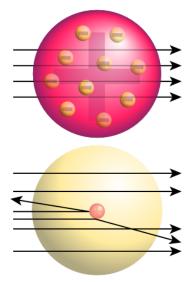
What is a hard probe?

Early hard probe experiments



What is a hard probe?

• Early hard probe experiments

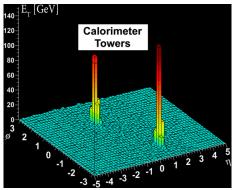


• Rutherford's α scattering experiment

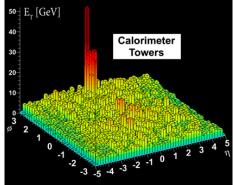
$$\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2}Z^2\alpha_{\rm EM}^2\left(\frac{\hbar c}{E_{\rm kin}}\right)^2 \times \frac{1}{(1-\cos\theta)^2}$$

- Small angle scattering dominates $d\sigma/d\cos\theta \propto 1/\theta^4$
- But backscattering prob. is finite, favoring Rutherford's model over Thompson's (which causes no backscattering)

Fast-forward to the present



ATLAS: Intact dijets in Pb+Pb



ATLAS: One jet is fully quenched in Pb+Pb

- Simplest conclusion to draw: The medium is opaque.
- We want to know much more than that!

- Must be known & calculable using pQCD.
- Must be created *before* QGP forms

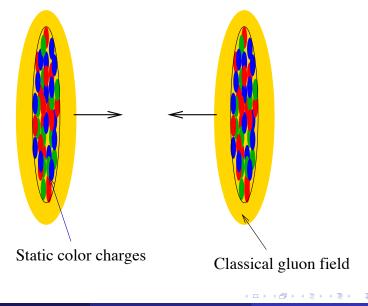
Both requirements satisfied if the energy scale is much large compared to $\Lambda_{QCD}\approx 200\,MeV$ and the length (time) scale is much shorter than \sim 1 fm.

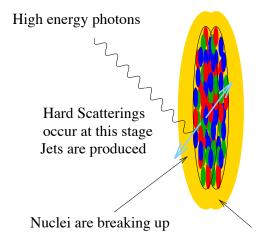
Probes

- Propagation of hard partons or "Jets"
- Quarkonium suppression
- High p_T electromagnetic probes (real and virtual photons)

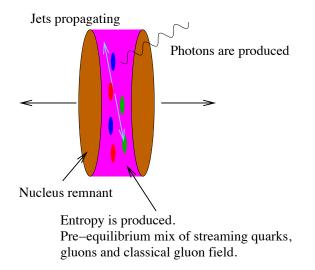
Goal

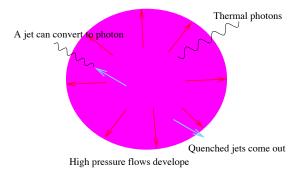
- To characterize QGP
- To characterize initial state (nPDF, CGC?)





Gluon fields are grabbing each other

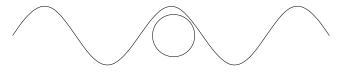




4 A N

Review of some basic concepts

• Spatial resolution: $\Delta x \Delta p \ge 1/2$



Shorter the wavelength (larger the momentum) sees spatial details up to Δ*x* ≈ λ.

Review of some basic concepts

Energy-Time uncertainty: $|\Delta E|\Delta t \ge 1/2$

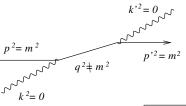
•
$$\Delta E = p^0 - \sqrt{\mathbf{p}^2 + m^2}$$
.

• If
$$\Delta E = 0$$
, then $p^{\mu}p_{\mu} = m^2$: On-shell

• If
$$\Delta E
eq 0$$
, the $p^{\mu}p_{\mu}
eq m^2$: Off-shell

Interpretation

• An off-shell state can exist only for $\Delta t \sim 1/|\Delta E|$.



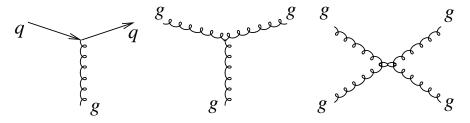
This interaction lasts $\Delta t \sim 1/|(|\mathbf{p}| + |\mathbf{k}| - \sqrt{(\mathbf{p} + \mathbf{k})^2})|$

Perturbative QCD

• • • • • • • • • • • •

Perturbative QCD (pQCD)

QCD – Interaction of quarks and gluons



- N_f flavors of quarks
- $N_c^2 1$ gluons

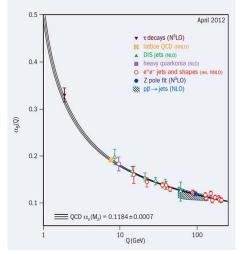
Perturbative QCD (pQCD)



Of course, things can get complicated.

- Tree diagrams of $n \leftrightarrow m$ processes
- Corrections to vertices
- Corrections to propagators

Perturbative QCD (pQCD)



S. Bethke, arXiv:1210.0325.

 Perturbative expansion possible because of asymptotic freedom

•
$$Q^2 \frac{\partial \alpha_S}{\partial Q^2} = -\beta_0 \alpha_S^2 - \beta_1 \alpha_S^3 + \cdots$$

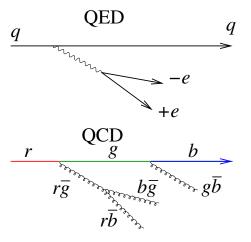
•
$$\alpha_{\mathcal{S}}(Q^2) \approx$$

 $\overline{((33-2n_f)/12\pi)\ln(Q^2/\Lambda_{\rm QCD}^2)}$

• pQCD reliable for $Q \gtrsim 1 \, {
m GeV}$

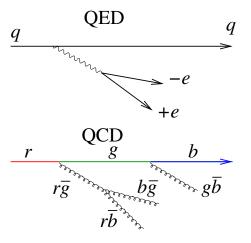
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Intuitive understanding of asymptotic freedom



- QED: Surrounded by virtual *ee* cloud
- Virtual −e cloud drawn closer to q > 0 ⇒ Screening
- Larger Q ⇒ smaller distance ⇒ Sees less of the cloud ⇒ Closer to bare charge
- Possible because the original *q* never changes and photons do not carry charges

Intuitive understanding of asymptotic freedom



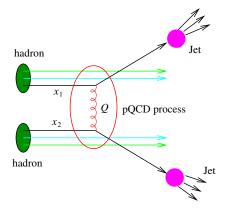
- QCD: Can resolve more soft virtual gluons at larger *Q*
- The color of the real particle can change whenever a gluon is emitted.
- Larger Q
 —> More frequent changes
 —> Less average color charge
 —> Asymptotic freedom

• As $Q \rightarrow \Lambda_{QCD}$,

$$lpha_{\mathcal{S}}(\boldsymbol{Q}^2) pprox rac{1}{((33-2n_f)/12\pi)\ln(\boldsymbol{Q}^2/\Lambda_{
m QCD}^2)}
ightarrow \infty$$

- Hadrons are $O(\Lambda_{QCD})$ objects.
- Anything that has to do with hadron properties such as color confinement and hadronization is *non-perturbative*.
- In the IR limit, perturbation theory does not work —> Factorize what can be calculated with pQCD (UV) and what cannot be calculated (IR)

Factorization Theorem



Hadron-Hadron Jet production scheme:

$$\sigma = \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ \times \sigma_{ab \rightarrow cd} D_{C/c}(z_C, Q)$$

A D > A B > A B > A

Factorization Theorem

How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- *f_{a/h}(x*₁, *Q_f)*: Parton distribution function. Probability to have a parton type *a* with the momentum fraction *x*₁ in a hadron *h*. Depends on the factorization scale *Q_f*.
- D_{C/c}(z_C, Q'_f): Fragmentation function. Probability to create a hadron type C our of parton type c carrying the momentum fraction z_c.
- $\sigma_{ab \rightarrow cd}(Q_R)$: Parton-parton scattering cross-section.

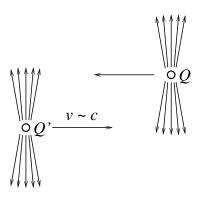
く 戸 と く ヨ と く ヨ と

Factorization Theorem

How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- pQCD controls the *evolutions* of $f_{a/h}(x_1, Q_f)$ and $D_{C/c}(z_C, Q'_f)$. But pQCD cannot determine the initial data because this is dominated by IR processes.
- pQCD *can* calculate $\sigma_{ab \to cd}(Q_R)$ when the renormalization scale Q_R can be set high (that is, when \sqrt{s} is large)



- Weizsäcker-Williams field Highly contracted in the *z* direction
- Coulomb potential in the rest frame of the charge

$$\varphi = \mathbf{Q}/|\mathbf{r}|$$

In the moving frame

$$A^{\mu}(x') = \Lambda^{\mu}_{\nu}A^{\nu}(x(x'))$$

• The coordinate in the moving frame x' = (t, x, y, z). This corresponds to the rest frame position

$$\boldsymbol{x} = (t\gamma - z\gamma \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y}, z\gamma - t\gamma \boldsymbol{v}).$$

Hard Probes

.

- Weizsäcker-Williams field Highly contracted in the z direction
- Coulomb potential in the rest frame of the charge

$$arphi = \mathbf{Q}/|\mathbf{r}|$$

In the moving frame

$$\mathcal{A}^{\mu} = rac{Q(\gamma, \mathbf{0}, \mathbf{0}, \gamma \mathbf{v})}{\sqrt{(z - vt)^2 \gamma^2 + \Delta \mathbf{x}_{\perp}^2}}$$

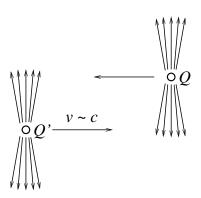
• Pure gauge in the $v \rightarrow 1$ limit

$$A^{\mu} \approx \frac{Q(1,0,0,1)}{|z - vt|} = Q\partial_{\mu} \ln |z - vt|$$

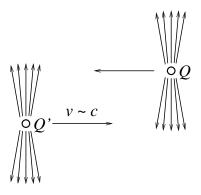
$$(1)$$

Jeon (McGill)

Hard Probes



- Weizsäcker-Williams field Highly contracted in the *z* direction
 F^{µν} ≈ 0 unless *z* ≈ *vt*
- In the rest frame: Coulomb field is made up of space-like virtual photons q^μq_μ = -q² with q₀ = 0.
- In the Lab frame: $q'^{\mu} = (q^z \sinh \eta, \mathbf{q}_{\perp}, q^z \cosh \eta)$
- For large η , $|\Delta E| = |q^- - |\mathbf{q}|| \sim e^{-\eta} \mathbf{q}^2/q_z$ $\implies \Delta t \sim 1/|\Delta E| \sim e^{\eta} q_z/\mathbf{q}^2 \implies$ virtual photons look almost like real photons.



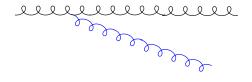
- Weizsäcker-Williams field Highly contracted in the *z* direction $F^{\mu\nu} \approx 0$ unless $z \approx vt$
- To a first approximation, the approaching particles *do not* know about each other until they are on top of each other.
- Initial photon momentum distribution factorizes: $F(x_1, x_2) = f(x_1)f(x_2)$ but this is not exact.
- In QCD, color neutrality of hadrons help.

• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

 Q_0 : Coarse grained. You see one almost on-shell parton.

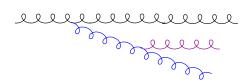
Jeon	(McGill)
	(

- 4 ∃ →



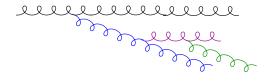
$Q_0 < Q_1$: Start to resolve another parton

-∢ ∃ ▶

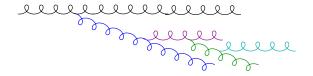


$Q_0 < Q_1 < Q_2$: And another

- ∢ ∃ ▶



$Q_0 < Q_1 < Q_2 < Q_3$: And another



You get the idea

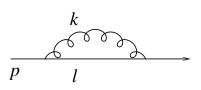
- 4 ∃ →

• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

$$Q^2 rac{\partial}{\partial Q^2} \left(egin{array}{c} q^S \ g \end{array}
ight) = rac{lpha_{\mathcal{S}}(Q^2)}{2\pi} \left(egin{array}{c} P_{qq} & 2n_f P_{qg} \ P_{gg} & P_{gg} \end{array}
ight) \otimes \left(egin{array}{c} q^S \ g \end{array}
ight)$$

where P_{ij} : Splitting function \sim Probability to end up with *ij* in the final state.

A (1) > A (2) > A



- p is on-shell: $p^2 = 0$
- Diverges when either k or l is on-shell
- This happens either *k* is very soft so that

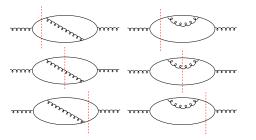
$$l^2 = (p-k)^2 \approx p^2$$

• or p and k are almost collinear

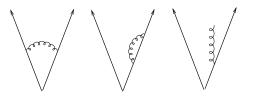
$$l^2 = (p-k)^2 = p^2 + k^2 - 2pk$$

$$\approx 0$$

Splitting can cause IR divergence



- g
 ightarrow q ar q and g
 ightarrow q ar q g
- Only the *sum* is IR finite because soft and collinear divergences
- Splitting functions know about this



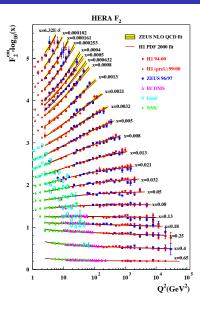
- Observables must be IR safe.

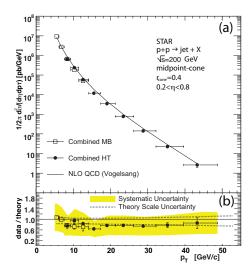
- Splitting function similarly runs
- 3 different scales: Q_f for the pdf, Q_R for σ(Q_R) and Q'_f for the fragmentation function
- In principle, physical observables should not depend on these scales. However, factorization theorem is only *approximate*.
- Lots of freedom to choose the scales. Usually something like

$$Q_f = Q_R = Q'_f = \# p_T$$

works OK where p_T is the momentum of the *final* state particle.

pQCD & Factorization at work





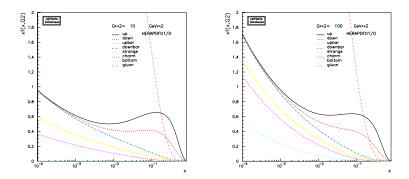
イロト イヨト イヨト イヨト

Jeon (McGill)

Hard Probes

Jeju 2013 32 / 127

pQCD & Factorization at work



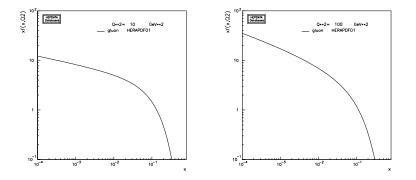
CTEQ 06 Proton PDF's

Jeon (McGill)

Jeju 2013 33 / 127

イロト イ団ト イヨト イヨ

pQCD & Factorization at work



• Gluon distributions for $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 100 \text{ GeV}^2$.

- E - N

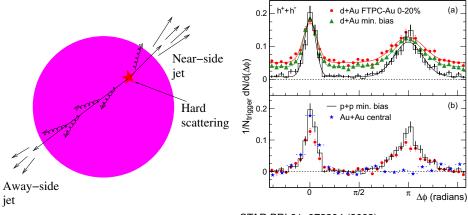
Jet Quenching

⊷ ব ≣ ► ্ ছি ∽ ৭.৫ Jeju 2013 35 / 127

Medium properties

- What is it made of? QGP or HG?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools Change in jet properties
 - Jet Quenching
 - Jet Broadening

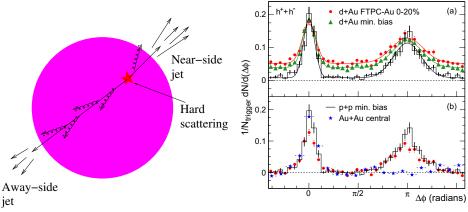
Away side jet disappears! – Proof of principle



STAR PRL91, 072304 (2003)

< A

Away side jet disappears! – Proof of principle

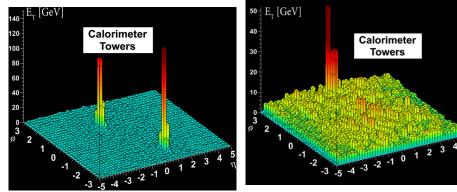


STAR PRL91, 072304 (2003)

Now we need more informative observables to study detailed properties of the medium.

leon (McGill)	Hard Probes	Jeju 2013	37 / 127

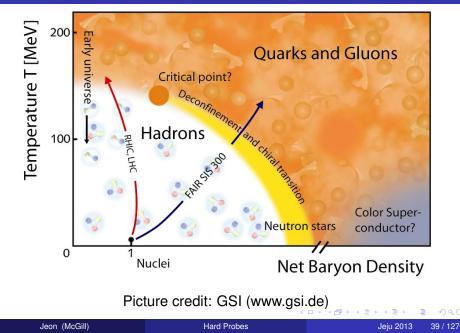
Away side jet disappears! - Proof of principle



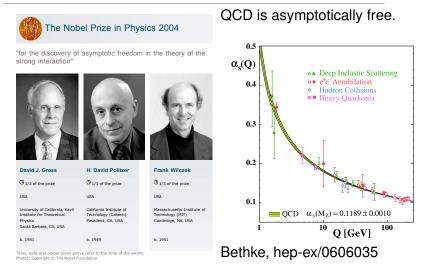
ATLAS: Intact dijets in Pb+Pb

ATLAS: One jet is fully quenched in Pb+Pb

QCD Phase Diagram



Nobelprize.org



The Official Web Site of the Nobel Foundation

Copyright © Nobel Web AB 2007

Jeon (McGill)

Hard Probes

Jeju 2013 40 / 127

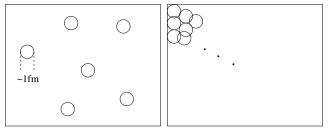
At high T

Running coupling

$$\alpha_{s}(\mu^{2}) = \frac{12\pi}{(33 - 2N_{f})\ln(\mu^{2}/\Lambda_{\text{QCD}}^{2})}$$

- When $\mu \sim \Lambda_{\rm QCD} \sim$ 200 MeV, the above expression blows up: Not physical. Indicates breakdown of perturbation theory.
- Perturbative QCD is a theory of quarks and gluons *not* hadrons.
- At high *T*, $\mu \sim T$.
- Possible phase transition around $T \sim \Lambda_{QCD}$?
- If $\mu \sim T \rightarrow \infty$, $\alpha_s \rightarrow$ 0: Weakly coupled
- At $\mu \sim$ few GeV, $\alpha_{s} \sim$ 0.2 0.4

Another estimate of $T_{transition}$



T~200 MeV

• Density: Consider a pion gas.

$$n = 3 \int rac{d^3 p}{(2\pi)^3} \, rac{1}{e^{E_p/T} - 1} \propto T^3$$

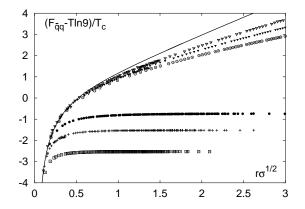
As *T* becomes larger, more and more pair creation results.Inter particle distance:

$$l_{\rm inter} = n^{1/3} \approx 1/T$$

At T= 200 MeV, $\mathit{I}_{\mathrm{inter}} pprox$ 1 fm $pprox \mathit{r}_{\pi}$

- Perturbative calculation possible much above $\mu = \Lambda_{QCD}$
- $\mu \sim T$ at high T
- If *T* is much above the binding energy of hadrons
 Deconfinement
- At high enough *T*, the system is a plasma of weakly interacting quarks and gluons
- All the above arguments are plausible but not a proof

Lattice QCD Evidence

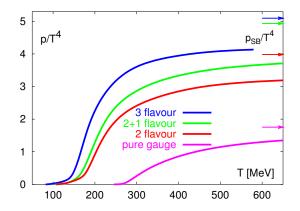


• F. Karsch, hep-lat/0403016. The color averaged heavy quark free energy at temperatures $T/T_c = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5$ (from top to bottom) obtained in quenched QCD.

Jeon (McGill)

< 口 > < 同

Lattice QCD – QGP



- QCD is an asymptotically free theory High T => Free quarks and gluons
- Phase transition happens Hadrons should 'melt' at around $T = 170 \text{ MeV} = 2 \times 10^{12} \text{ K}$ [F.Karsch et al.] "Cross-over"

Expected properties

High number density

$$n \approx (24+16) \int \frac{d^3p}{(2\pi)^3} e^{-p/T} \approx 4 T^3$$
$$= 4 \left(\frac{T}{200 \text{ MeV}}\right)^3 \text{ fm}^{-3}$$

• High energy density

$$\varepsilon \approx (24+16) \int \frac{d^3p}{(2\pi)^3} p e^{-p/T} \approx 12 T^4$$
$$= 2.4 \left(\frac{T}{200 \text{ MeV}}\right)^4 \text{ GeV/fm}^3$$

イロト イ団ト イヨト イヨ

Simple Estimate

- 1 mole of hydrogen atom: 6.2×10^{23} atoms = 1 g (Avogadro's number)
- 1 hydrogen atom $m_{
 m p} pprox (1/6) imes 10^{-23}\,{
 m g}$
- $m_p = 940 \, {
 m MeV} pprox 1 \, {
 m GeV}$
- $E = mc^2$: 1 GeV $\approx (1/6) \times 10^{-23}$ g

$$\begin{array}{rcl} 2.4\,\text{GeV}/\text{fm}^3 &=& 0.4\times10^{-23}\,\text{g}/(10^{-13}\,\text{cm})^3\\ &=& 0.4\times10^{-23+39}\,\text{g/cm}^3\\ &=& 0.4\times10^{16}\,\text{g/cm}^3\\ &=& 4\times10^{12}\,\text{kg/cm}^3 \end{array}$$

• Typical human: $\sim 100 \, \text{kg}$

$$2.4\,GeV/fm^3~\sim~4\times10^{10}\,human/cm^3$$

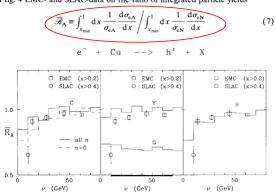
How do you achieve high temperature?

- Temperature = energy (1 eV \approx 12,000K)
- More usefully, the energy density:

$$arepsilon = g \int rac{d^3
ho}{(2\pi)^3} \, extsf{E}_{
ho} \, extsf{e}^{- extsf{E}_{
ho}/ au} pprox rac{3g}{\pi^2} extsf{T}^4$$

- To get high temperature: Get high energy density --> Cram maximum possible energy into the smallest possible volume while randomizing the momenta --> Relativistic heavy ion collisions.
- What to expect: *dN*/*dη* and *dE*/*dη* grow something like (ln s)ⁿ with n ~ 1 ⇒ T should behave something like (ln s)ⁿ with n ~ 1

- High temperature —> Thermal photons
- High density *Jet quenching*
- High pressure → Hydrodynamic flow
 - The size of the eliptic flow depends on the shear viscosity η .
 - If weakly coupled, $\eta/s \gg$ 1 : pprox Ideal gas
 - If stronly coupled, $\eta/s \ll 1$: \approx Perfect (Ideal) fluid.
- Neutrality —> Tight unlike-sign correlation
- Critical point —> Large momentum fluctuations



In fig. 4 EMC- and SLAC-data on the ratio of integrated particle yields



Miklos Gyulassy and Michael Plümer *Jet quenching in lepton nucleus scattering* in Nuclear Physics B Volume 346, 1 (1990).

Key Idea: Compare high p_T spectrum in sth-*N* and sth-*A* by plotting the ratio.

How jets are disappearing in hot/dense medium can tell us about the medium

A D M A A A M M

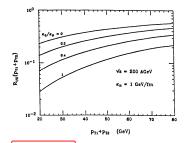


Fig. 7 Dijet reduction factor for central U + U collisions at $\sqrt{s} = 200$ GeV/n as a function of the dijet energy $E = P_{T1} + P_{T2}$, for different values of κ_Q/κ_H assuming $\kappa_H = 16$ GeV/fm.

transverse coordinate, ϕ the azimuthal angle of the jet and $\tau_f(r, \phi)$ the escape time. Assuming only Bjorken[31] scaling longitudinal expansion and a Bag model equation of state[31], one can find the time dependence of $dE(\tau)/dx$ and get the reduction rate of jet production at fixed P_T by averaging over the initial coordinates $(r, \phi)[22]$,

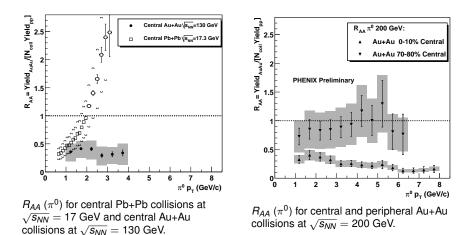
$$R_{AA}(E) = \frac{\sigma^{jet}(E)_{quenching}}{\sigma^{jet}(E)_{no-quenching}}.$$
(11)

In the plasma phase, the temperature decreases as $T(\tau)/T_c = (\tau_Q/\tau)^{1/3}$. According to Eq. 9, $dE/dx \approx \kappa_Q (\tau_Q' \tau)^{2/3}$, denoting the energy loss in the plasma phase by

Xin-Nian Wang and Miklos Gyulassy, Jets in relativistic heavy ion collisions in BNL RHIC Workshop 1990:0079-102 (QCD199:R2:1990)

.

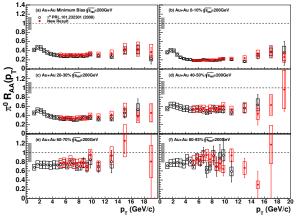
QM 2002 (PHENIX)



Presented by S. Mioduszewski at QM 2002

Jeon (McGill)

(4) (5) (4) (5)



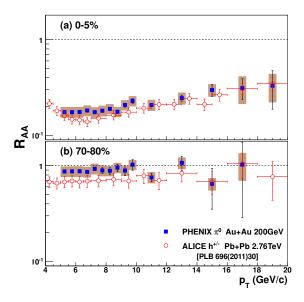
PHENIX, arXiv:1208.2254

イロト イ理ト イヨト イヨト

 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{pp}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

In 2012



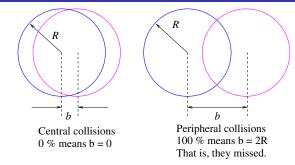
PHENIX, arXiv:1208.2254

 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{pp}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

Jeon (McGill)

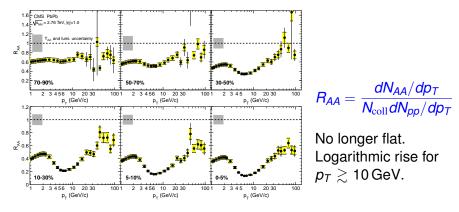
Centrality



For instance:

- 0 5% means top 5% of all collisions in terms of the number of particles produced (multiplicity).
- 70 80% means the collection of events whose multiplicity ranks between bottom 30% and bottom 20%.
- Centrality and impact parameter b not strictly 1 to 1, but very close.

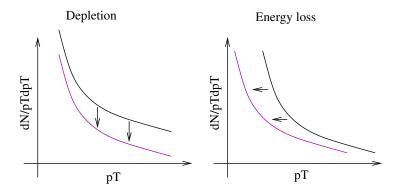
Jeon (McGill)



CMS, 1208.6218v1

イロト イポト イヨト イヨ

Two ways to understand $R_{AA} < 1$



- The spectrum can shift down when particles actually disappear (depletion)
- The spectrum can shift to the left by energy loss *This is the more realistic scenario.*

Jeon (McGill)

- For high p_T , $dN_{\rm pp}/dp_T \approx 1/p_T^n$.
- Suppose, on average, a particle with *p_T* loses Δ*p_T* while traversing QGP.
- Then the number of particles with *p_T* in AA is the same as the number of particles with *p_T* + Δ*p_T* in pp.

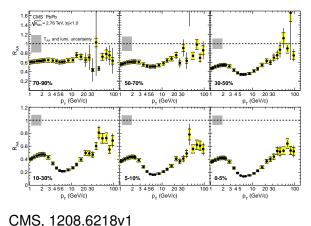
$$R_{AA} = \frac{dN_{AA}/dp_T}{N_{\rm col}dN_{\rho\rho}/dp_T} \approx \frac{dN_{\rho\rho}/dp_T|_{\rho_T + \Delta p_T}}{dN_{\rho\rho}/dp_T|_{p_T}}$$

- What we want to learn: Behavior of Δp_T in the medium
- Shape of R_{AA} depends very much on the shape of dN_{pp}/dp_T

• Suppose $dN_{pp}/dp_T = 1/p_T^n$ (realistic for high p_T)

$$R_{AA} \approx \left(rac{
ho_T}{
ho_T + \Delta
ho_T}
ight)^n = \left(rac{1}{1 + \Delta
ho_T /
ho_T}
ight)^n$$

- Let $\Delta p_T \propto p_T^s$.
- R_{AA} constant if s = 1
- R_{AA} approaches 1 as $p_T \rightarrow \infty$ if s < 1.
- R_{AA} approaches 0 as $p_T \rightarrow \infty$ if s > 1.



• Let $\Delta p_T \propto p_T^s$.

- R_{AA} constant if s = 1
- R_{AA} approaches 1 as $p_T \rightarrow \infty$ if s < 1.

• R_{AA} approaches 0 as $p_T \rightarrow \infty$ if s > 1.

Data suggests that for up to about 5 GeV, $\Delta p_T \propto p_T^{1+a}$ and after that $\Delta p_T \propto p_T^{1-b}$

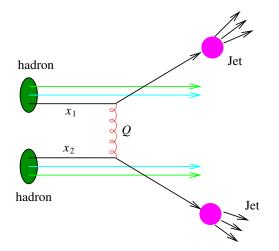
Jet Quenching – Schematic Ideas

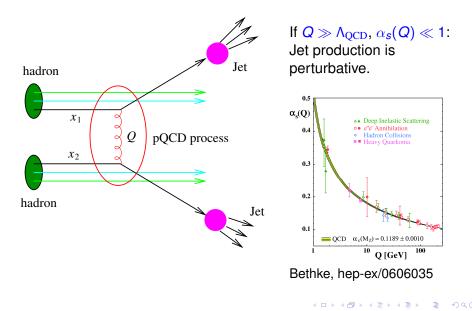
Jeon (McGill)

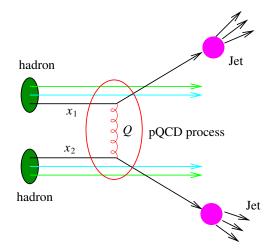
Hard Probes

Jeju 2013 59 / 127

4 A N

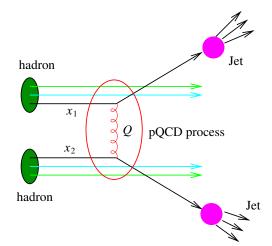






If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.

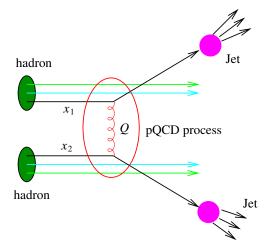
→ Calculation is possible.



If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.

→ Calculation is possible.

➡ We understand this process in hadron-hadron collisions.

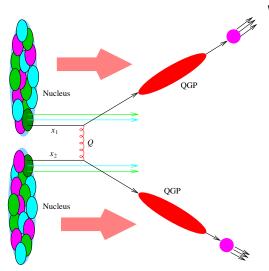


Hadron-Hadron Jet production scheme:

< 6 b

$$\begin{aligned} \frac{d\sigma}{dt} &= \\ \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ &\times \frac{d\sigma_{ab \to cd}}{dt} D(z_c, Q) \end{aligned}$$

Heavy Ion Collisions



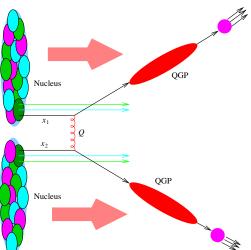
What we want to study:

< 17 ▶

 How does QGP modify jet property?

Jeon (McGill)

Heavy Ion Collisions



What we want to study:

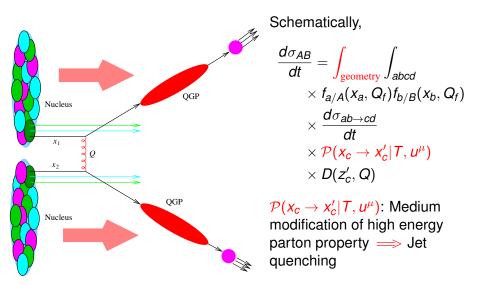
 How does QGP modify jet property?

Complications: How well do we know the *initial* condition?

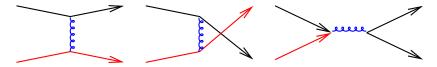
- Nuclear initial condition?
- What happens to a jet between the production and the formation of (hydrodynamic) QGP?

- E 🕨

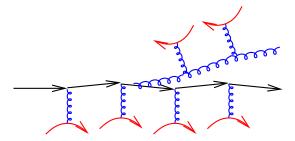
Heavy Ion Collisions



Relevant processes for E-loss



Elastic scatterings with thermal particles



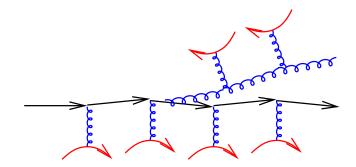
Collinear radiation

- Hot and dense system Requires resummation: HTL & LPM
- Finite size system
- System is evolving

- 3 →

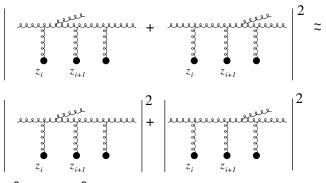
Radiational Energy Loss – Why coherence matters

Process to study



• Radiative (Inelastic) energy loss via collinear gluon emission

Incoherent emission



- $|\sum_n T_n|^2 \approx \sum |T_n|^2$
- Interference terms $T_n^* T_m$ with $n \neq m$ negligible.
- Single emission probabilist scales like the number of scatterers:

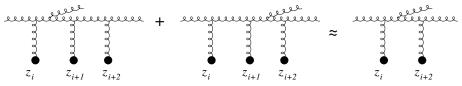
$$\mathcal{P}_{N_{sc}} \approx N_{sc} \mathcal{P}_{1}$$

• In a unit length, there are $N_{sc} = \frac{1}{l_{mfp}}$ number of scatterers. MFP = mean free path.

Jeon (McGill)

Coherent emission

If there is a destructive interference.



Single emission probability scales like

$$\mathcal{P}_{N_{\rm sc}} \approx rac{N_{\rm sc}}{N_{\rm coh}} \mathcal{P}_1$$

where $N_{\rm coh}$ is the number of scattering centers that destructively interfere.

- The medium's power to induce radiation is reduced.
- In the unit length, there are effectively,

$$N_{\rm eff. sc} = \frac{1}{I_{\rm coh}} = \frac{1}{I_{\rm mfp}} \frac{1}{N_{\rm coh}} = \frac{1}{I_{\rm coh}}$$
Hard Probes

/ 127

Effective Emission rate

• Coherent Emission rate:

$$rac{d\mathcal{P}}{dt}pproxrac{c}{I_{\mathrm{coh}}}\mathcal{P}_{1}$$

Incoherent Emission rate:

$$rac{d\mathcal{P}}{dt} pprox rac{c}{I_{\mathrm{mfp}}} \mathcal{P}_{1}$$

• Here, \mathcal{P}_1 : Bethe-Heitler

$$\mathcal{P}_1 \approx rac{lpha_{\mathcal{S}} N_c}{\pi \omega}$$

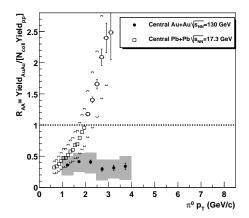
for small ω

Jeon ((McGill)

-∢ ∃ ▶

Understanding the radiative energy loss

▲ 同 ▶ → 三 ▶

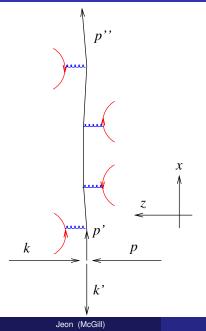


- R_{AA} < 1: Energy loss
- R_{AA} > 1: Energy gain

Jeon (McGill)

・ロト ・ 四ト ・ ヨト ・ ヨト

$R_{AA} < 1$

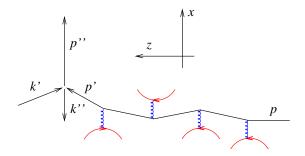


- High energy particle
- Initial energy $E_p = p_z$
- Just after collision: $p'_x = p_z$
- *Final state interactions* with the QGP medium add little bits to p'_z but *subtract little bits* from p'_x .
- Resulting in:

Hard Probes

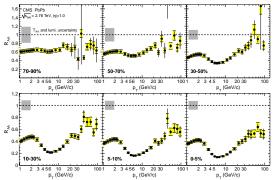
$$E_{\text{jet}} = \sqrt{p''_{x}^{2} + p''_{z}^{2}} \approx p''_{x} < E_{p}$$

$$\implies \text{Energy loss}$$



- Low energy particle
- Initial state interactions with other nucleons add not-so-small momentum (compared to the original energy) in both directions.
- |p'| > |p|
- After the hard collision:
 p''_x ≈ |p'| > p_z ⇒ Energy gain

CMS: Up to $p_T = 100 \text{ GeV}$



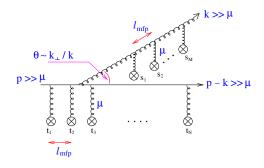
Can we understand these features in terms of microscopic processes in QGP?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Radiational (Inelastic) Energy Loss – Qualitative understanding

Coherent scattering can be important

Following BDMPS



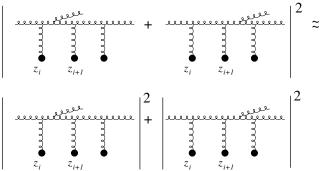
• What we need to calculate R_{AA} : Differential gluon radiation rate $\omega \frac{dN_g}{d\omega dz}$

Medium dependence comes through a scattering length scale

$$\omega \frac{dN_g}{d\omega dz} \approx \frac{1}{I} \omega \left. \frac{dN_g}{d\omega} \right|_{\rm B}$$

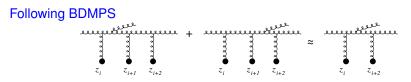
 $l \approx t$

Following BDMPS



• If all scatterings are incoherent $(I_{mfp} > I_{coh})$,

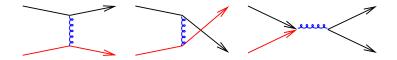
$$I = I_{\rm mfp} = 1/\rho\sigma$$



• If $I_{coh} \ge I_{mfp} \implies$ LPM effect:

All scatterings within $l_{\rm coh}$ effectively count as a single scattering.

• $I = I_{\rm coh}$



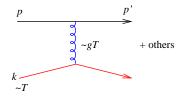
• Mean free path (textbook definition)

$$\frac{1}{l_{\rm mfp}} \equiv \int d^3 k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{\rho k}) \frac{d\sigma^{\rm el}}{dq^2}$$

where

- $\rho(k)$: density, $(1 \cos \theta_{\rho k}) \Delta E \approx q^2/2k$: flux factor
- Elastic cross-section (Coulombic) $\frac{d\sigma}{dq^2} \approx C_R \frac{2\pi\alpha_s^2}{(q^2)^2}$

Estimation of Imfp



• Mean free path (textbook definition)

$$\frac{1}{l_{\rm mfp}} \equiv \int d^3 k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{\rho k}) \frac{d\sigma^{\rm el}}{dq^2}$$

where

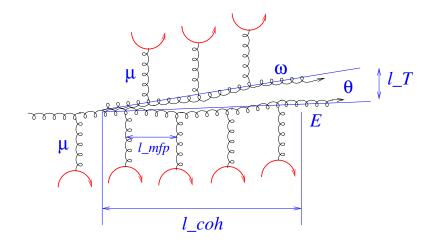
- $\rho(k)$: density, $(1 \cos \theta_{\rho k}) \Delta E \approx q^2/2k$: flux factor
- Elastic cross-section (Coulombic) $\frac{d\sigma}{dq^2} \approx C_R \frac{2\pi\alpha_s^2}{(q^2)^2}$

• With thermal $\rho(k)$, this yields

$$\frac{1}{I_{\rm mfp}} \sim \int d^3 k \rho(k) \int_{m_D^2}^{\infty} dq^2 \frac{\alpha_S^2}{q^4} \sim T^3 \alpha_S^2 / m_D^2 \sim \alpha_S T$$

イロト イヨト イヨト

Estimation of $I_{\rm coh}$

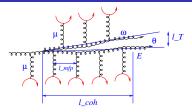


• $E \gg \omega_g \gg \mu$

2

< A

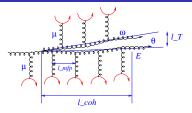
Estimation of Icoh



- ω « E ⇒ The radiated gluon random walks away from the original parton. Original parton's trajectory is less affected.
- From the geometry $\frac{\omega_g}{k_T^g} \approx \frac{I_{\rm coh}}{I_T}$
- Separation condition: I_T is longer than the transverse size of the radiated gluon. $I_T \approx 1/k_T^g$
- Putting together,

$$I_{
m coh} pprox rac{\omega_g}{(k_T^g)^2}$$

Estimation of Icoh



• Putting together,

$$I_{\rm coh} \approx rac{\omega_g}{(k_T^g)^2}$$

• After suffering *N*_{coh} collisions (random walk),

$$\left\langle (k_T^g)^2 \right\rangle = N_{\rm coh} \mu^2 = \frac{I_{\rm coh}}{I_{\rm mfp}} \mu^2$$

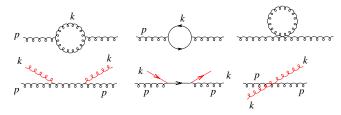
• Becomes, with $\hat{q} = \mu^2 / I_{\rm mfp}$ and $E_{\rm LPM} = \mu^2 I_{\rm mfp}$,

$$I_{\rm coh} \approx I_{\rm mfp} \sqrt{\frac{\omega_g}{E_{\rm LPM}}} = \sqrt{\frac{\omega_g}{\hat{q}}}$$

Jeon (McGill)

Estimation of μ^2

Debye mass



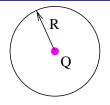
- Second row: Physical forward scattering with particles in the medium
- The last term is easiest to calculate:

$$m_D^2 \propto g^2 \int rac{d^3k}{E_k} f(k) \propto g^2 T^2$$

● Effectively add m²_DA²₀ ⇒ NOT gauge invariant ⇒ Gauge invariant formulation: Hard Thermal Loops

Jeon (McGill)

Physical origin of Debye mass



E & M

- Let Q > 0. Within the range R
 - Positive charges are pushed away: $Q_+ = Q_0 = \delta Q$
 - Negative charges are pulled in: $Q_{-} = Q_0 + \delta Q$
- At position R, apparent net charge is reduced

$$Q_{\text{net}} = Q + (Q_0 - \delta Q) - (Q_0 + \delta Q) = Q - 2\delta Q$$

This is screening.

 When it's moving, there is a net potential energy associated with Q even in charge neutral medium
Acts like a "mass"

Physical origin of Debye mass

E & M

Potential in a thermal system

$$\nabla^2 \Phi(\mathbf{r}) = -\rho(\mathbf{r})$$

• Medium composed of many charged particles

$$\rho(\mathbf{r}) = qn_+(\mathbf{r}) - qn_-(\mathbf{r})$$

• Boltzmann Density:

$$n_{\pm}(\mathbf{r}) = \int \frac{d^{3}k}{(2\pi)^{3}} e^{-E/T} \\
= \int \frac{d^{3}k}{(2\pi)^{3}} e^{-\sqrt{k^{2}+m^{2}}} e^{\mp q\Phi(\mathbf{r})/T} \\
= n_{0}(T) e^{\mp q\Phi(\mathbf{r})/T} \\
\approx n_{0}(T) (1 \mp q\Phi(\mathbf{r})/T)$$

-∢ ∃ ▶

- E & M
- Boltzmann Density:

$$n_{\pm}(\mathbf{r}) \approx n_0(T)(1 \mp q\Phi(\mathbf{r})/T)$$

• Linearized equation for the potential:

$$abla^2 \Phi - m_D^2 \Phi pprox 0$$

where

$$m_D^2 = 2q^2(n_0(T)/T)$$

< 🗇 🕨 < 🖃 >

What we learned so far

Coherence length

$$I_{
m coh} pprox I_{
m mfp} \sqrt{rac{\omega_g}{E_{
m LPM}}} = \sqrt{rac{\omega_g}{\hat{q}}}$$

where $\hat{q} = \mu^2 / I_{\rm mfp}$ (average momentum transfer squared per collision) If your chosen process is

• Soft gluon emission, $\omega_g < \mu^2 I_{\rm mfp}$,

• Hard gluon emission, $E \gg \omega_g > \mu^2 I_{\rm mfp}$,

→ Coherence matters. Resummation needed.

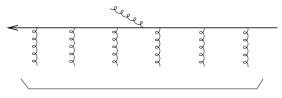
Both

> Need the cross-section that is correct in both limits.

- Key quantity: $E_{\text{LPM}} = \mu^2 I_{\text{mfp}} \sim T$ in pert. thermal QCD
- Key quantity: $\hat{q} \sim \alpha_S^2 T^3$ in pert. thermal QCD

Rough Idea – Multiple Emission (Poisson ansatz)

After each collision, there is a finite probability to emit



Number of effective collisions

- Let the emission probability be p
- Total number of *effective* collisions N_{trial} taking into account of I_{mfp} and I_{coh}.
- Average number of emissions $\langle n \rangle = N_{\text{trial}} p$
- Probability to emit *n* gluons

$$P(n) = \frac{N_{\text{trial}}!}{n!(N_{\text{trial}}-n)!} \rho^n (1-\rho)^{N_{\text{trial}}-n}$$

Rough Idea – Multiple Emission (Poisson ansatz)

• Poisson probability: Limit of binary process as $\lim_{N_{trial} \to \infty} N_{trial} p \to \langle n \rangle$

$$P(n) = e^{-\langle n
angle} rac{\langle n
angle^n}{n!}$$

• Average number of gluons emitted up to $t_i < t$

$$\langle n \rangle = \int_{-\infty}^{E} d\omega \int_{t_{i}}^{t} dz \frac{dN}{dzd\omega} = \int_{-\infty}^{E} d\omega \frac{dN}{d\omega}(t)$$

• Probability to lose ϵ amount of energy by emitting *n* gluons:

$$\langle n \rangle^{n} \rightarrow D(\epsilon, t)$$

$$= \int_{-\infty}^{E} d\omega_{1} \frac{dN}{d\omega_{1}} \int_{-\infty}^{E} d\omega_{2} \frac{dN}{d\omega_{2}} \cdots \int_{-\infty}^{E} d\omega_{n} \frac{dN}{d\omega_{n}} \delta(\epsilon - \sum_{k=1}^{n} \omega_{k})$$

$$= \sum_{k=1}^{n} \delta(\epsilon) + \sum_{k=1}$$

Rough Idea – Multiple Emission (Poisson ansatz)

Parton spectrum at t

$$P(p,t) = \int d\epsilon D(\epsilon,t) P_0(p+\epsilon)$$

where

$$D(\epsilon, t) = e^{-\int d\omega \frac{dN}{d\omega}(\omega, t)} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dN}{d\omega_{i}}(\omega_{i}, t) \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}\right)$$

Can easily show that this Poisson ansatz solves:

$$\frac{dP(p,t)}{dt} = \int d\omega \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega) P(p+\omega,t) - P(p,t) \int d\omega \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega)$$

with the p (jet energy) independent rate

$$\frac{dN}{d\omega}(\omega,t) = \int_{t_0}^t dt' \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega,t')$$

Rough Idea - The behavior of R_{AA}

Use $R_{AA} \approx 1/(1 + \epsilon/p)^n \approx e^{-n\epsilon/p}$ when $n \gg 1$. Include gain by absoprtion or $\omega < 0$:

$${\cal R}_{AA}(p)=rac{P(p)}{P_0(p)}pprox \exp\left(-\int_{-\infty}^\infty d\omega\,\int_0^t dt'\,(dN_{
m inel+el}/d\omega dt)(1-e^{-\omega n/p})
ight)$$

For the radiation rate, use simple estimates

$$\begin{split} \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{I_{\rm mfp}} & \text{for } 0 < \omega < I_{\rm mfp} \mu^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp} \omega}} & \text{for } I_{\rm mfp} \mu^2 < \omega < I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{L} & \text{for } I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 < \omega < E \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi |\omega|} \frac{N_c}{I_{\rm mfp}} e^{-|\omega|/T} & \text{for } \omega < 0 \end{split}$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rough Idea - The behavior of R_{AA}

For elastic energy loss,

$$\begin{aligned} \mathcal{R}_{AA}^{\text{el}} &\approx & \exp\left(-\int_{-\infty}^{\infty} d\omega \int_{0}^{t} dt' \, (d\Gamma_{\text{el}}/d\omega dt)(1-e^{-\omega n/p})\right) \\ &\approx & \exp\left(-t\left(\frac{dE}{dt}\frac{K(\omega_{0})}{|\omega_{0}|}\right)\right) \\ &\approx & \exp\left(-t\left(\frac{dE}{dt}\right)\left(\frac{n}{p}\right)\left(1-\frac{nT}{p}\right)\right) \end{aligned}$$

valid for p > nT and we used

$$\begin{aligned} \mathcal{K}(\omega_0) &= (1+n_B(|\omega_0|))(1-e^{-|\omega_0|n/p}) + n_B(|\omega_0|)(1-e^{|\omega_0|n/p}) \\ &\approx |\omega_0|\left(\frac{n}{p}\right)\left(1-\frac{nT}{p}\right) \quad \text{for small } \omega_0 \end{aligned}$$

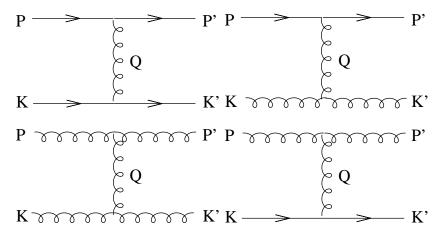
where ω_0 is the typical gluon energy

Jeon (McGill)

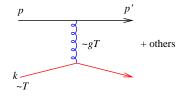
A D > A B > A B > A

Elastic scattering rate

Coulombic t-channel dominates



Rough Idea - Elastic energy loss(Following Bjorken)



Mean free path (textbook definition)

$$\frac{1}{I_{\rm mfp}} \equiv \int d^3k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{pk}) \frac{d\sigma^{\rm el}}{dq^2}$$

Energy loss per unit length

$$\frac{dE}{dz} = \int d^3k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{pk}) \Delta E \frac{d\sigma^{\rm el}}{dq^2}$$

where

•
$$\rho(k)$$
: density, $(1 - \cos \theta_{pk}) \Delta E \approx q^2/2k$: flux factor

• Elastic cross-section (Coulombic) $\frac{d\sigma}{d\sigma^2} \approx C_R \frac{2\pi\alpha_s^2}{(\sigma^2)^2}$

Jeon (McGill)

• With thermal ρ , this yields

$$\left(\frac{dE}{dz}\right)_{\rm coll} \sim \int d^3 k \rho(k)/k \int dq^2 \alpha_S^2/q^2 \sim \alpha_S^2 T^2 \ln(ET/m_D^2)$$

Upper limit determined by

$$q^2=(p-k)^2=p^2+k^2-2pkpprox-2pk\sim ET$$

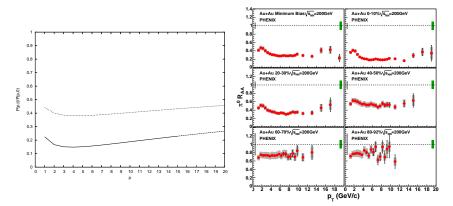
when $|\mathbf{p}| = E$ (emitter) and $|\mathbf{k}| = O(T)$ (thermal scatterer) Lower limit determined by the Debye mass $m_D = O(gT)$. More precisely,

$$\frac{dE}{dt} = \frac{1}{2E} \int_{k,k',p'} \delta^4(p+k-p'-k') (E-E') |M|^2 f(E_k) [1 \pm f(E'_k)] \\ = C_r \pi \alpha_s^2 T^2 \left[\ln(ET/m_g^2) + D_r \right]$$

where C_r and D_r are channel dependent O(1) constants.

< 🗇 🕨 < 🖃 >

Rough Idea - The behavior of R_{AA}

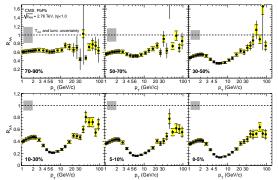


- Upper line: Without elastic
- Lower line: With elastic
- Flat *R* is produced in both cases up to *O*(10 *T*).
- *R* just not that sensitive to *p* in the RHIC-relevant range.

Jeon (McGill)

Hard Probes

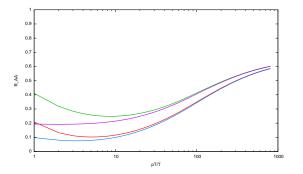
CMS: Up to $p_T = 100 \text{ GeV}$



No longer flat. Logarithmic rise for $p_T \gtrsim 10 \,\text{GeV}$. Can we understand these features?

A B F A B F

Rough Idea - The behavior of R_{AA}



- Red: Elastic on, thermal absorption on
- Blue: Elastic on, thermal absorption off
- Green: Elastic off, thermal absorption on
- Magenta: Elastic off, thermal absorption off
- Dip, rise, leveling-off roughly reproduced
- No dip if thermal absorption is turned off

Jeon (McGill)

For other features, first recall

Use $R_{AA} \approx 1/(1 + \epsilon/p)^n \approx e^{-n\epsilon/p}$ when $n \gg 1$. Include gain by absoprtion or $\omega < 0$:

$$\mathcal{R}_{AA}(p) = rac{P(p)}{P_0(p)} pprox \exp\left(-\int_{-\infty}^{\infty} d\omega \, \int_{0}^{t} dt' \, (dN_{
m inel+el}/d\omega dt)(1-e^{-\omega n/p})
ight)$$

For the radiation rate, use simple estimates

$$\begin{split} \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{I_{\rm mfp}} & \text{for } 0 < \omega < I_{\rm mfp} \mu^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp} \omega}} & \text{for } I_{\rm mfp} \mu^2 < \omega < I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{L} & \text{for } I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 < \omega < E \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi |\omega|} \frac{N_c}{I_{\rm mfp}} e^{-|\omega|/T} & \text{for } \omega < 0 \end{split}$$

• • • • • • • • • • • •

Interpretation

With E = p (original parton energy) and the system size L and $(1 - e^{-n\omega/E}) \approx n\omega/E$: • If $E < E_{\text{LPM}} = \mu^2 l_{\text{mfp}}$, $\ln R_{AA} \approx -L \int_0^E d\omega \frac{dN}{d\omega dt} \left(\frac{n\omega}{E}\right) \approx \frac{nL}{E} \int_0^E d\omega \omega \left(\frac{\alpha_S}{\pi \omega} \frac{N_c}{l_{\text{mfp}}}\right) \sim \text{Const.}$ Flat R_{AA}

• If
$$E_{\text{LPM}} < E < E_L = L^2 \mu^2 / l_{\text{mfp}}$$
,
 $\ln R_{AA} \approx -\frac{nL}{E} \int_0^{E_{\text{LPM}}} d\omega \omega \left(\frac{\alpha_S}{\pi \omega} \frac{N_c}{l_{\text{mfp}}}\right)$
 $-\frac{nL}{E} \int_{E_{\text{LPM}}}^E d\omega \omega \left(\frac{\alpha_S}{\pi \omega} N_c \sqrt{\frac{\mu^2}{l_{\text{mfp}}\omega}}\right)$

Jeon (McGill)

 $= -\frac{nL\alpha_{S}N_{c}}{\pi I_{mfn}} \left(2\sqrt{\frac{E_{LPM}}{E} - \frac{E_{LPM}}{E}}\right)$

Plateau at high p_T

- If $E > E_L = L^2 \mu^2 / \lambda$,

$$\ln R_{AA} \approx -\frac{nL}{E} \int_{0}^{E_{\rm LPM}} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} \frac{N_c}{I_{\rm mfp}}\right) \\ -\frac{nL}{E} \int_{E_{\rm LPM}}^{E_{\rm L}} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp}\omega}}\right) \\ -\frac{nL}{E} \int_{E_{\rm L}}^{E} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} \frac{N_c}{L}\right) \\ \approx -n \frac{\alpha_{\rm S} N_c}{\pi} \left(1 + \frac{E_{\rm L}}{E} (1 - I_{\rm mfp}/L)\right)$$

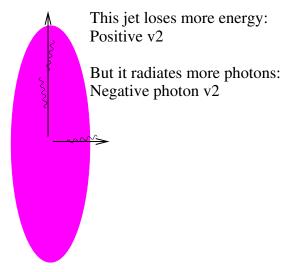
This is approximately constant for large *E*.

Jeon (McGill)

< < >>

- Dip-rise-flat feature qualitatively understandable
- Opaque medium
- Density of the medium
- Dip in *R_{AA}*: Could be an indirect indication of the initial temperature.
- Plateau at high p_T: Could be an indication that *I*_{coh} > *L* is reached.
 ⇒ Extract *q̂* from *I*_{coh} ≈ √ω/*q̂*?

Understanding high p_T part of v_2



Jeon (McGill)

Jeju 2013 102 / 127

Understanding high p_T part of v_2

• For $E \lesssim E_{\text{LPM}}$, $\Delta E \propto E \ln R_{AA} \propto LE$ Roughly speaking,

$$v_2 = \frac{p_x - p_y}{p_x + p_y} \propto (L_y - L_x)$$

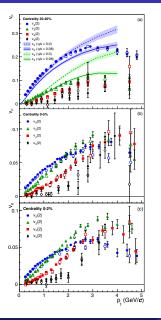
• For $E_{\text{LPM}} \lesssim E \lesssim E_L$, $\Delta E \propto E \ln R_{AA} \propto \sqrt{\hat{q}E}L$ then

$$v_2 = rac{p_x - p_y}{p_x + p_y} \propto (L_y - L_x) rac{\sqrt{\hat{q}}}{\sqrt{E}}$$

• For $E \gtrsim E_L \Delta E \propto (E + E_L)$ then

$$v_2 \sim rac{(L_y^2 - L_x^2)}{E}$$

LHC Data



- Data: ALICE, 1105.3865v2
- High $p_T v_2$: Flat, then falls like $1/\sqrt{p_T}$ and then $1/p_T$.
- Can understand high p_T data qualitatively although $1/p_T$ behavior may not be visible since this is for $E > E_L$.
- The slope $dv_2/dp_T \propto -\sqrt{\hat{q}}$
- Of course, this is very rough: Viscosity also curves it down and p_T ≥ 3 GeV may not be high enough.

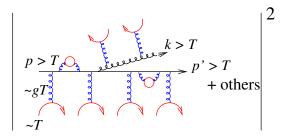
★ ∃ →

Thermal QCD calculation of the radiation rate

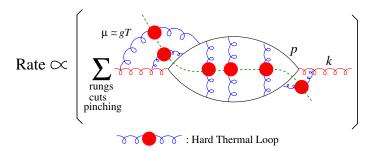
Jeon (McGill)

Hard Probes

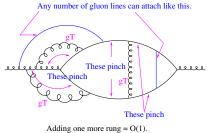
Jeju 2013 105 / 127



- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* << 1, *p* > *T*, *k* > *T*



- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* ≪ 1, *p* > *T*, *k* > *T*
- Sum all interactions with the medium including the self-energy



Need to resum.

- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* << 1, *p* > *T*, *k* > *T*
- Sum all interactions with the medium including the self-energy
- Leading order: 3 different kinds of collinear pinching poles

• • • • • • • • • • • • •

• What pinching does: Let

$$P = \left(\frac{i}{p_1^2 + m_2^2 + 2iE_1\Gamma_1}\right)^* \frac{i}{p_2^2 + m_1^2 + 2iE_2\Gamma_2}$$

• Poles for positive energies at $p_1^0 = E_1 - i\Gamma_1$ and $p_2^0 = E_2 + i\Gamma_2$

• If $p_1^0 = E_1 - i\Gamma_1$ puts p_2 also almost on-shell,

$$P\propto rac{1}{E_1E_2}\delta(p_1^0-E_1)rac{1}{\delta E+i\Gamma_2+i\Gamma_1}$$

where δE : difference in the real part of the energy

 Physically, this means that an almost on-shell particle lives a long time Δt ~ 1/δE ~ 1/Γ ⇒ Introduces a secular divergence

• Pinching poles occur when

• $p_1 \approx p_2$: Soft momentum exchange or radiation.

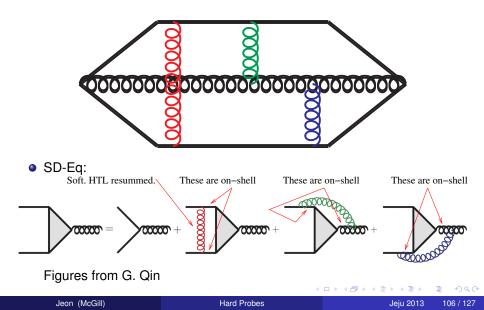
If
$$p_1^2 + m^2 = O(g^2 T^2)$$
, so is $p_2^2 + m^2 = O(g^2 T^2)$.

• $p_2 = xp_1$: Collinear radiation. When $p_1^2 + m^2 = O(g^2T^2)$,

$$p_2^2 + m^2 = x^2 p_1^2 + m^2 + O(g^2 T^2) = (1 - x^2)m^2 + O(g^2 T^2)$$

When $m \approx gT$, the whole expression is $O(g^2T^2)$.

→ Ξ →



• SD Equation for the vertex F

$$2\mathbf{h} = i\delta E(\mathbf{h}, p, k)\mathbf{F}_{s}(\mathbf{h}) + g^{2} \int \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{2}} C(\mathbf{q}_{\perp}) \times \\ \times \Big\{ (C_{s} - C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - k \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} + \rho \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - (p - k) \mathbf{q}_{\perp})] \Big\}, \\ \delta E(\mathbf{h}, p, k) = \frac{\mathbf{h}^{2}}{2pk(p-k)} + \frac{m_{k}^{g2}}{2k} + \frac{m_{p-k}^{s2}}{2(p-k)} - \frac{m_{p}^{s2}}{2p}.$$

h = (p × k) × e_{||} — Must keep track of both p_⊥ and k_⊥ now. For photons, we could just set k_⊥ = 0.

< □ > < □ > < □ > < □ >

• SD Equation for the vertex F

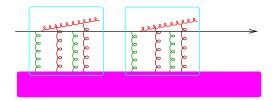
$$2\mathbf{h} = i\delta E(\mathbf{h}, p, k)\mathbf{F}_{s}(\mathbf{h}) + g^{2} \int \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{2}} C(\mathbf{q}_{\perp}) \times \\ \times \Big\{ (C_{s} - C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - k \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} + \rho \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - (\rho - k) \mathbf{q}_{\perp})] \Big\}, \\ \delta E(\mathbf{h}, p, k) = \frac{\mathbf{h}^{2}}{2pk(\rho - k)} + \frac{m_{k}^{g2}}{2k} + \frac{m_{\rho - k}^{s2}}{2(\rho - k)} - \frac{m_{\rho}^{s2}}{2p}.$$

- s: Process dependence. $q \rightarrow qg, g \rightarrow gg, g \rightarrow q\bar{q}$.
- g
 ightarrow q ar q: Exchange coeff. of the first and second line
- m_s^2 : Medium induced thermal masses of the emitter.

• Rate for p > T, k > T (valid for $p \gg T$ and $k \gg T$ as well)

$$\begin{split} \frac{dN_g(p,k)}{dkdt} &= \frac{C_s g_s^2}{16\pi p^7} \frac{1}{1\pm e^{-k/T}} \frac{1}{1\pm e^{-(p-k)/T}} \times \\ &\times \begin{cases} \frac{1+(1-x)^2}{x^3(1-x)^2} & q \to qg \\ N_f \frac{x^2+(1-x)^2}{x^2(1-x)^2} & g \to q\bar{q} \\ \frac{1+x^4+(1-x)^4}{x^3(1-x)^3} & g \to gg \end{cases} \\ &\times \int \frac{d^2 \mathbf{h}}{(2\pi)^2} 2\mathbf{h} \cdot \operatorname{Re} \mathbf{F}_s(\mathbf{h},p,k) \,, \end{split}$$

• s: Process dependence.



• Evolution - Medium enters through $T(t, \mathbf{x})$ and $u^{\mu}(t, \mathbf{x})$

$$\begin{aligned} \frac{d\mathcal{P}_{q}(p)}{dt} &= \int_{k} \mathcal{P}_{q}(p+k) \frac{dN_{qg}^{g}(p+k,k)}{dkdt} - \mathcal{P}_{q}(p) \int_{k} \frac{dN_{qg}^{g}(p,k)}{dkdt} \\ &+ \int_{k} 2\mathcal{P}_{g}(p+k) \frac{dN_{q\bar{q}}^{g}(p+k,k)}{dkdt} , \\ \frac{d\mathcal{P}_{g}(p)}{dt} &= \int_{k} \mathcal{P}_{q}(p+k) \frac{dN_{qg}^{g}(p+k,p)}{dkdt} + \int_{k} \mathcal{P}_{g}(p+k) \frac{dN_{gg}^{g}(p+k,k)}{dkdt} \\ &- \mathcal{P}_{g}(p) \int_{k} \left(\frac{dN_{q\bar{q}}^{g}(p,k)}{dkdt} + \frac{dN_{gg}^{g}(p,k)}{dkdt} \Theta(k-p/2) \right) \end{aligned}$$

イロト イヨト イヨト イヨト

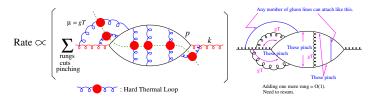


Modified fragmentation function with jet initial condition s, n, p_i

$$\begin{split} \bar{D}_{\pi^0,c}(z,Q;\mathbf{s},\mathbf{n}) &= \int dp_f \frac{z'}{z} \left(\mathcal{P}_{qq/c}(p_f;p_i) D_{\pi^0/q}(z',Q) + \mathcal{P}_{g/c}(p_f;p_i) D_{\pi^0/g}(z',Q) \right) ,\\ \tilde{D}(z,Q) &= \int d^2 s \, \frac{T_A(\mathbf{s}) T_B(\mathbf{s}+\mathbf{b})}{T_{AB}(\mathbf{b})} \, \bar{D}_{\pi^0,c}(z,Q;\mathbf{s},\mathbf{n}) \end{split}$$

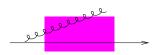
Э.

・ロト ・ 四ト ・ ヨト ・ ヨト

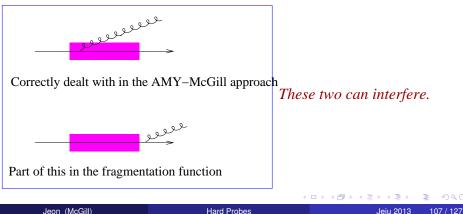


- Collision geometry including path length fluctuations are all included.
- Both BH and LPM limits included
- Includes all leading order splittings
- Includes thermal absorption
- All produced quarks and gluons fragment
- Medium evolution (T(t, x), u_µ(t, x)) fully taken into account including the effect of flow vector
- Easy to add other process such as elastic coll. γ production within leading order QCD/QED.

What is not included yet (vacuum-medium interference)



Included in the PDF scale dependence



What is not included yet (vacuum-medium interference)

• The *L*² dependence in the heuristic BDMPS expression we got before

$$\ln R_{AA} \approx -n \frac{\alpha_{S} N_{c}}{\pi} \left(1 - \frac{L \mu^{2}}{E} + \frac{E_{L}}{E} \right)$$

cannot be reproduced since original AMY always assumes $L > I_{\rm coh}$.

• Finite size effect is being worked on (Caron-Huot and Gale).

The Evolving Medium

- E - N

Hydrodynamic evolution

- As the jets propagate, medium undergoes an evolution of its own.
- Best modeling tool we have: Ideal Hydrodynamics. It solves

 $\partial_{\mu}T^{\mu\nu} = 0$ and $\partial_{\mu}j^{\mu}_{B} = 0$

with the Ideal hydro ansatz

 $T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$ and $j^{\mu}_{B} = \rho_{B}u^{\mu}$

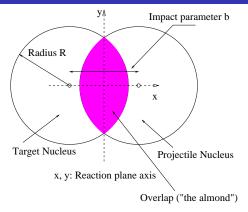
and an EoS

 $\boldsymbol{P} = \boldsymbol{f}(\varepsilon, \rho_{\boldsymbol{B}})$

with suitable initial conditions.

- Medium evolution: $\epsilon(t, \mathbf{x}), u^{\mu}(t, \mathbf{x})$
- Equivalently, $T(t, \mathbf{x}), u^{\mu}(t, \mathbf{x})$

Geometry



Density function

$$T_A(\mathbf{s}) = \int dz \,
ho_A(\mathbf{s}, z)$$

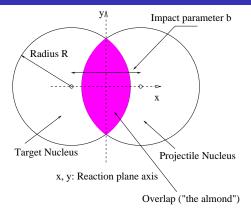
• Overlap function:

```
T_{AB}(\mathbf{s},\mathbf{b}) = T_A(\mathbf{s})T_B(\mathbf{b}+\mathbf{s})
```

Jeon (McGill)

æ

Geometry

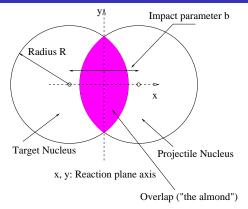


- Participants: $N_{\text{part}}(\mathbf{s}, \mathbf{b}) \propto T_A(\mathbf{s}) + T_B(\mathbf{b} + \mathbf{s})$
- Binary scatterings: $N_{\rm bin}(\mathbf{s}, \mathbf{b}) \propto T_{AB}(\mathbf{s}, \mathbf{b})$ ٠
- Initial energy density ٠

 $\varepsilon(\mathbf{s}, \mathbf{b}) = c_1 \left[T_A(\mathbf{s}) + T_B(\mathbf{b} + \mathbf{s}) \right] + c_2 T_{AB}(\mathbf{s}, \mathbf{b})$

(本語) (本語) (二)

Geometry



- Ultimately, initial geometry determines the initial conditions and the final flow pattern.
- Initial geometry also determines number of jets at s and the path conditions for those jets.

★ ∃ ► 4

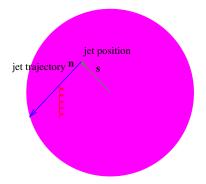
- Three places where "Dynamic" medium enters.
 - Cross-section

$$rac{d\sigma_{GW}}{dq^2} = rac{C}{(q^2 + \mu^2)^2}$$
 vs $rac{d\sigma_{QCD-HTL}}{dq^2} = rac{C}{q^2(q^2 + m_D^2)}$

- Space-time dependence of T or μ , \hat{q} .
- The effect of flow

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction n to get the straight line trajectory.



Jeon	(McGill)
------	----------

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- Calculate the average number of emitted gluons

$$\langle N_g
angle = \int d\omega \int_{t_0}^{t_f} dt \, rac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- · Calculate the average number of emitted gluons

$$\langle N_g \rangle = \int d\omega \int_{t_0}^{t_f} dt \, \frac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

• Use the Poisson ansatz to get probability to emit *n* gluons

$$P_n = e^{-\langle N_g
angle} \, rac{\left< N_g
ight>^n}{n!}$$

Jeon (McGill)

Jeju 2013 113 / 127

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- Calculate the average number of emitted gluons

$$\langle N_g \rangle = \int d\omega \int_{t_0}^{t_f} dt \, \frac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

• Use the Poisson ansatz to get probability to emit *n* gluons

$$P_n = e^{-\langle N_g
angle} \, rac{\left< N_g
ight>^n}{n!}$$

• Can express it as $P_n(\epsilon)$ using an energy conserving δ -function

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- Calculate the average number of emitted gluons

$$\langle N_g \rangle = \int d\omega \int_{t_0}^{t_f} dt \, \frac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

Use the Poisson ansatz to get probability to emit n gluons

$$P_n = e^{-\langle N_g \rangle} \frac{\langle N_g \rangle^n}{n!}$$

• Works as long as one can easily calculate $\frac{dN_g}{dw}$ along the trajectory

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- · Calculate the average number of emitted gluons

$$\langle N_g \rangle = \int d\omega \int_{t_0}^{t_f} dt \, \frac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

• Use the Poisson ansatz to get probability to emit *n* gluons

$$P_n = e^{-\langle N_g
angle} \, rac{\left< N_g
ight>^n}{n!}$$

• Relatively simple to implement

Jeon (M	AcGill)
---------	---------

• $\frac{dN}{d\omega dt}$ is independent of the jet energy

- Determine the position of the jet s.
- Fix the direction **n** to get the straight line trajectory.
- Calculate the average number of emitted gluons

$$\langle N_g \rangle = \int d\omega \int_{t_0}^{t_f} dt \, \frac{dN_g}{d\omega dt}$$

along the trajectory. $dN_g/d\omega dt$ depends on (t, \mathbf{x}) through T or (μ, \hat{q}) .

• Use the Poisson ansatz to get probability to emit *n* gluons

$$P_n = e^{-\langle N_g
angle} \, rac{\left< N_g
ight>^n}{n!}$$

• BDMS, (D)GLV, AWS, ...

Jeon (McGill)

Two possible approaches

• $\frac{dN_g}{d\omega dt}$ depends on the jet energy

- Determine the position s
- Determine the direction n
- Solve (numerically)

$$\frac{dP(p,t)}{dt} = \int_{k} \frac{dN}{d\omega dt} (p+k,k) P(p+k,t) - P(p,t) \int_{k} \frac{dN}{d\omega dt} (p,k)$$

4 A N

- Determine the position s
- Determine the direction n
- Solve (numerically)

$$\frac{dP(p,t)}{dt} = \int_{k} \frac{dN}{d\omega dt} (p+k,k) P(p+k,t) - P(p,t) \int_{k} \frac{dN}{d\omega dt} (p,k)$$

• Can deal with changing environment and changing trajectory

- Determine the position s
- Determine the direction n
- Solve (numerically)

 $\frac{dP(p,t)}{dt} = \int_{k} \frac{dN}{d\omega dt} (p+k,k) P(p+k,t) - P(p,t) \int_{k} \frac{dN}{d\omega dt} (p,k)$

- Can deal with changing environment and changing trajectory
- Can keep track of both quarks and gluons at the same time

- Determine the position s
- Determine the direction n
- Solve (numerically)

 $\frac{dP(p,t)}{dt} = \int_{k} \frac{dN}{d\omega dt} (p+k,k) P(p+k,t) - P(p,t) \int_{k} \frac{dN}{d\omega dt} (p,k)$

- Can deal with changing environment and changing trajectory
- Can keep track of both quarks and gluons at the same time
- Easy to add other processes including γ production

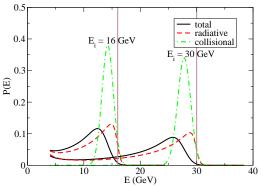
- Determine the position s
- Determine the direction n
- Solve (numerically)

 $\frac{dP(p,t)}{dt} = \int_{k} \frac{dN}{d\omega dt} (p+k,k) P(p+k,t) - P(p,t) \int_{k} \frac{dN}{d\omega dt} (p,k)$

- Can deal with changing environment and changing trajectory
- Can keep track of both quarks and gluons at the same time
- Easy to add other processes including γ production
- McGill-AMY

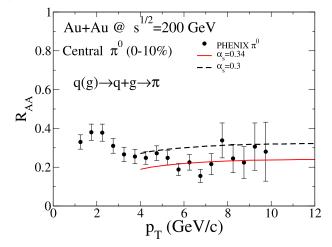
Example evolution of a single jet (Qin)

 The final momentum distribution P(E, t_f) of a single quark jet after passing through RHIC medium (b = 2.4 fm)



- Medium described by (3+1)D ideal hydrodynamics.
- The jet starts at the center and propagates in plane.
- Jet energy loss turned off in hadronic phase.

R_{AA} at RHIC - π^0 - Radiation only (Turbide)

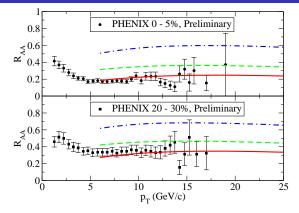


 $T_i = 370$ MeV, dN/dy = 1260. 1-D Bjorken expansion. Best $\alpha_s = 0.33$ s.Turbide, C.Gale, S.J. and G.Moore, PRC72:014906,2005

Jeon (McGill)

Jeju 2013 116 / 127

R_{AA} at RHIC – π^0 - Full (Qin)



• 3+1D hydro

• Includes radiational and collisional energy loss: rad+coll, rad, coll

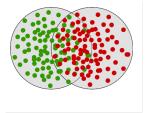
• Strong coupling α_s : 0.33 (rad) and 0.27 (rad+coll)

Guangyou Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore, M.G. Mustafa

Phys.Rev.Lett.100: 072301, 2008

Jeon (McGill)

Monte Carlo Approach - MARTINI



- Sample overlapping region for binary collisions
- Produce high p_T partons by PYTHIA 8.1

Jeon (McGill)

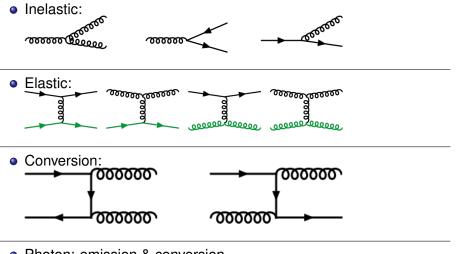
- Put them in the hydro background. Sample the total collision rate at each time step according to the local environment and decide whether to interact with the medium.
- If yes, decide which process to enact according to the branching ratio.
- Sample the chosen process to simulate change 4-momentum of the jet parton
- Hadronize by PYTHIA 8.1 when the parton is outside QGP. Hard Probes

Jeiu 2013

118/127

Monte Carlo Approach - MARTINI

Process include in MARTINI (all of them can be switched on & off):

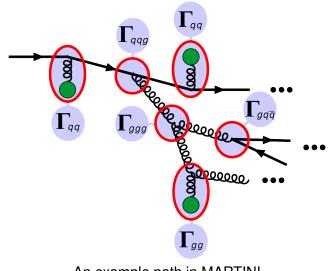


Photon: emission & conversion

Jeon (McGill)	Hard Probes	

Jeju 2013 119 / 127

Monte Carlo Approach - MARTINI



An example path in MARTINI

		□ > < @ > < E > < E >	
Jeon (McGill)	Hard Probes	Jeiu 2013	119/127

• While this is happening in the background ...

Image: A math a math

Projection on to the longitudinal plane

Jeon (McGill)

Hard Probes

Jeju 2013 121 / 127

Projection onto the transverse plane

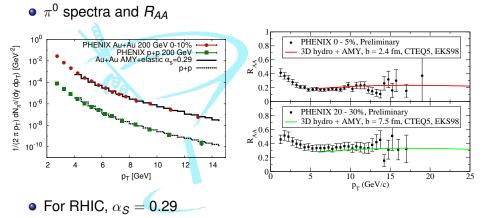
Jeon (McGill)

Hard Probes

Jeju 2013 122 / 127

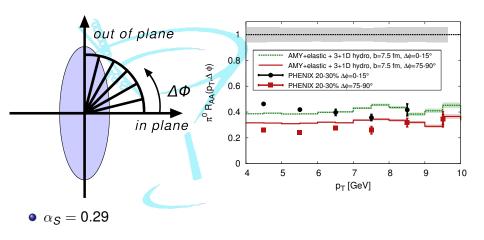
Pion production

[Schenke, Jeon and Gale, Phys. Rev. C 80, 054913 (2009)]



A D M A A A M M

• $R_{AA}(p_T, \Delta \phi)$



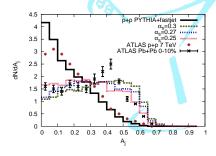
イロト イヨト イヨト イヨト

MARTINI – LHC dN/dA

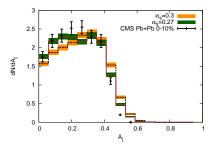
[Young, Schenke, Jeon, Gale, Phys. Rev. C 84, 024907 (2011)].

•
$$A = (E_t - E_a)/(E_t + E_a)$$

- This is with ideal hydro with a smooth initial condition
- Full jet reconstruction with FASTJET
- $\alpha_S = 0.27$ seems to work.



ATLAS, PRL 105 (2010) 252303



CMS, arXiv: 1102.1957 (2011)

Jeon (McGill)

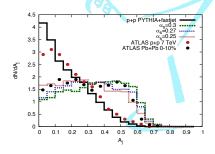
Jeju 2013 125 / 127

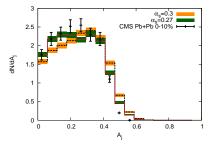
MARTINI – LHC dN/dA

[Young, Schenke, Jeon, Gale, Phys. Rev. C 84, 024907 (2011)].

•
$$A = (E_t - E_a)/(E_t + E_a)$$

- This is with ideal hydro with a smooth initial condition
- Full jet reconstruction with FASTJET
- $\alpha_S = 0.27$ seems to work.





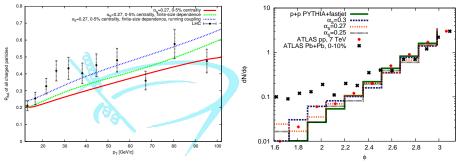
CMS, arXiv: 1102.1957 (2011)

ATLAS, QM 2011 Jeon (McGill)

Jeju 2013 125 / 127

Not the full story

[Clint's HP2012 Proceedings]



- R_{AA} For LHC, constant α_S suppresses jets too much.
- Need to incorporate finite length effect (Caron-Huot-Gale) and running α_s . This is with maximum $\alpha_s = 0.27$.
- Don't quite get azimuthal dependence yet. Δφ broadening may be due to the background fluctuations → Need to combine UrQMD background?

- So many nuclear experiments are being done/planned. RHIC, LHC, Raon, FRIB, FAIR, JPARC, Dubina,...
- There never have been a time in history so much information is so readily available.
- This is a great time to be/become a nuclear physicist.
- Work hard. Think hard. Dream big.
- Never say/think, that that should be good enough. Make sure that it is *always excellent*!
- Attention to details, but don't lose sight of the big picture.
- Look around you.