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I. Introduction

1.1 Historical Remarks

• In 1928, Dirac published his famous paper in which the Driac equation

of the relativistic electron was given.

• One year later, Mott gave the theoretical derivation of the cross section

for the relativistic scattering of Dirac particles by point nuclei, known

as the ”Mott formula”.

• The pioneering experimental studies were begun in 1953 by Hofstadter et

al. at the Stanford University Linear Accelerator (SLAC) with electrons

of 116 MeV energy.

• The second phase at the Stanford studied the charge and magnetic mo-

ment distributions of single nucleons by elastic electron scattering.

• The third phase with higher-current is the study of the complex nuclei

up to 600 MeV at Saclay in later 1960’s.

• After that, many accelerators were built such as MIT Bates with 1 GeV

energy, Jlab, and so on.
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FIG. 1: Region in terms of energy transfer at fixed three momentum transfer.

1.2 General Features of Electron Scattering

Different electron scattering processes depending on energy transfer ω as

shown in Fig. 1:

• A large peak at ω = 0 produced by elastic scattering from the charge

distribution in the nuclear ground state.

• Peaks due to the excitation of discrete levels below the particle emission

threshold occur as the energy transfer ω increases.

• Overlapping peaks with several MeV width caused by excitation of col-

lective models, so called “giant resonances”.

• The quasi-elastic peak, where a nucleon is directly knocked out of the

nucleus by the electromagnetic field of the passing electrons. The width

of the peak, which is dependent on kinematics condition, is a conse-

quence of the internal motion of the nucleon inside the nucleus, referred

to ”Fermi motion”.

• Broad peak which corresponds to pion production processes where the

energy transfer is large enough to excite the individual nucleon.
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II. The Electron Scattering Theory

2.1 The Dirac Equation

The Dirac equation for a single-particle in a spherically symmetric poten-

tial V (r) is given by

{α·p+ βm+ V (r)}Ψ(r) = EΨ(r) (1)

where m is the mass of the particle, α and β are the standard 4×4 Dirac

matrices and Ψ(r) is the four element wave function. The wave function can

be separated into an angle-dependent part and a radial part via a partial

wave expansion.

When there is no potential, the solution has the well known plane wave

form given by

Ψ(r) =

√
E +m

2E

 I

σ·p
E+mI

 eip·rχs (2)

where I represents a 2×2 unit matrix and σ contains the 2×2 Pauli matrices.

The notation χs with s = ±1
2 is the Pauli two component spinors. For spin-12 ,

the eigenfunction of total angular momentum J = L+ 1
2σ is represented by

the spin angle function:

χµ
κ(r̂) =

∑
m,s

< lm,
1

2
s|jµ > Y m

l (r̂)χs (3)

where κ = ±(j + 1
2) is an eigenvalue of the operator K = β(σ·L+ 1), and is

given by

κ =

 l for j = l − 1
2

−l − 1 for j = l + 1
2 .
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Here, κ takes on all positive and negative integer values except zero. The

κ value specifies both the total angular momentum quantum number j and

the orbital angular momentum quantum number l

l =

 κ for κ > 0

−κ− 1 for κ < 0
(4)

and j = |κ| − 1
2 .

By using the Rayleigh expansion, the exponential in the plane wave be-

comes

eip·r =
∑
l

(i)l(2l + 1)jl(pr)Pl(cosΘ),

where Θ is the angle between p̂ and r̂. Using the addition theorem of the

spherical harmonics, this becomes

eip·r =
∑
lm

4π(i)ljl(pr)Y
m
l

∗(p̂)Y m
l (r̂). (5)

Multiply Eq. (5) by spinor χs and substitute the spin angle function of Eq. (3)

to obtain

eip·rχs =
∑
lm

4π(i)ljl(pr)Y
m
l

∗(p̂)Y m
l (r̂)χs

=
∑
κ,µ,m

4π(i)ljl(pr)Y
m
l

∗(p̂) < lm,
1

2
s|jµ > ψµ

κ(r̂). (6)

By using Eq. (6), we finally obtain the the partial wave form for the plane

wave

Ψ(r) =

√
E +m

2E

∑
κµ

4π(i)l < lµ− s,
1

2
s|jµ > ψµ

κ(r), (7)

where

ψµ
κ(r) =

 jl(pr)χ
µ
κ(r̂)

isκp
E+mjl̄(pr)χ

µ
−κ(r̂)

 (8)
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and we have introduced l̄ = l(−κ) and defined sκ = sign(κ) = l−l̄. Therefore,

(σ·L+ 1)χµ
κ(r̂) = −κχµ

κ(r̂)

σrχ
µ
κ(r̂) = −χµ

κ(r̂), (9)

where σr = σ·r̂ is a scalar operator so that σrχ
µ
κ belongs to the same j and

µ values.

For any spherically symmetric potential V (r), the radial part of the wave

function can be separated with the angular function and then, the wave

function can be defined by

ψµ
κ(r) = Rκ(r)χ

µ
κ(r̂) (10)

where the radial function R is written by

Rκ(r) =

 fκ(r)

igκ(r)

 . (11)

The radial equation can be written as

df

dr
= −κ+ 1

r
f(r) + [m+ E − V (r)]g(r)

dg

dr
=

κ− 1

r
g(r) + [m− E + V (r)]f(r). (12)

For a spherically symmetric potential, the wave function has the same

form as the plane wave but one needs the phase shift due to the potential.

The distorted wave functions for the electrons are obtained by solving the

Dirac equation in the presence of the static Coulomb potential of the nuclear

charge distribution. The Coulomb distorted incoming electron wave function

can be written as a summation of the partial waves, for incoming spin si, as

Ψsi
i (r) =

∑
κiµi

Cκiµi
eiδκiψµi

κi
(r). (13)
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The outgoing electron wave function for outgoing spin sf is given by

Ψ
sf
f (r) =

∑
κfµf

Cκfµf
e−iδκfψµf

κf
(r). (14)

In Eq. (13) and Eq. (14), ψµ
κ(r) is the electron eigenstate with angular mo-

mentum quantum number κ, µ given by

ψµ
κ(r) =

 fκ(r)χ
µ
κ(r̂)

igκ(r)χ
µ
−κ(r̂)

 (15)

where χµ
κ(r̂) is the same as the Eq. (3) and the radial functions f(r) (or g(r))

are obtained by solving numerically the two coupled Dirac radial equations.

To satisfy the incoming (or outgoing) boundary condition, we need

Cκµ =

√
E +m

2E
4π(i)l < l µ− s ,

1

2
s|jµ > Y µ−s

l

∗
(p̂). (16)

δκ is the phase shift for the partial wave, m is the electron mass, and s is the

electron spin projection.

2.2 Phase Shift Analysis for Relativistic Coulomb Wave Functions

In order to evaluate the phase shift of the continuum state wave func-

tions, we solve the radial wave function for a point charge Coulomb potential

(V(r)=-αZr ). The two coulped radial equations for the point Coulomb poten-

tial are

d

dr
f c = −κ+ 1

r
f c + (m+ E +

αZ

r
)gc

d

dr
gc =

κ− 1

r
gc + (m− E +

αZ

r
)f c (17)

where α = e2 = 1
137 is the fine-structure constant and Z is the atomic(charge)

number. The superscript c denotes the point Coulomb potential.
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As usual, there are two independent solutions. One is a regular solution

which is finite at the origin, the other is the irregular solution. The solutions

can be written in terms of the Whittaker functions Mλ,µ(z):

f c =

√
E +m

4pE
exp (

πη

2
)
|Γ(ν + 1− iη)|

Γ(2η + 1)
(r−

3
2 )

× Re[exp (−iπ
2
(ν +

1

2
) + iϕ)M−iη+1

2 ,ν
(2ipr)] (18)

gc =

√
E −m

4pE
exp (

πη

2
)
|Γ(ν + 1− iη)|

Γ(2η + 1)
(r−

3
2 )

× Im[exp (−iπ
2
(ν +

1

2
) + iϕ)M−iη+1

2 ,ν
(2ipr)], (19)

where Re means the real part of [...] and Im means the imaginary part of

[...]. The constants ν and η are given by

ν = ±
√
κ2 − (αZ)2 (20)

η =
αZE

p
(21)

and the phase ϕ becomes

e2iϕ = −
κ+ iηm

E

ν + iη
. (22)

The Whittaker function for r→0 becomes

Mλ,µ(z)≈e−
z
2zν+

1
2 . (23)

The asymptotic form at r→∞ is given by

f c≈

√
E +M

4pE
(
1

r
) cos [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ] (24)

gc≈−

√
E −M

4pE
(
1

r
) sin [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ]. (25)
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The regular solution needs the positive value ν > 0 and the irregular solutions

needs the negative value ν < 0.

In the asymptotic region, the radial wave functions in the presence of a

short range additional potential can be written in terms of a linear combi-

nation of the regular and the irregular solutions for point charge Coulomb

functions

f = Af cR +Bf cI

g = AgcR +BgcI , (26)

where the subscript R (or I) denotes the regular (or irregular) solution. The

solutions have the following asymptotic forms as r→∞

f≈

√
E +M

4pE
(
1

r
) cos [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ + δκ] (27)

g≈−

√
E −M

4pE
(
1

r
) sin [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ + δκ]. (28)

The coefficients A and B and the additional phase δκ are given by

A =
f cIg − gcIf

f cIg
c
R − f cRg

c
I

(29)

B =
gcRf − f cRg

f cIg
c
R − f cRg

c
I

(30)

and

tan δκ =
sin θ

A
B + cos θ

(31)

where

θ = δcκ,I − δcκ,R.

The phase difference θ between the regular and irregular point Coulomb

function must be nonzero and gives imprecise values of δκ if θ is too small.
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For me→0, the radial functions become

f−κ = gκ , g−κ = fκ,

and the phase shift is

δ−κ = δκ.

We found the regular and the irregular Coulomb wave functions for the nega-

tively charged particle in the Coulomb field. For a positively charged particle

such as a proton, the Coulomb wave functions can be obtained by changing

the sign of the charge value Z.

2.3 Relativistic Nucleon Wave Functions

The most general time-independent local Dirac equation containing the

five Lorentz-covariant interaction of Dirac theory can be written as

{α·p+ β[m+ US(r) + γµU
µ
V (r) + γ5UPS(r)

+γµγ5UPV (r) + σµνU
µν
T (r)]}Ψ(r) = EΨ(r) (32)

where α, β, γµ, γ5 and σµν are the 4×4 Dirac matrices. The potential

subscripts S, V , PS, PV and T represent scalar, vector, pseudoscalar, pseu-

dovector and tensor, respectively. The requirement that the parity and the

angular momentum operators commute with each term of the Hamiltonian

in Eq. (32) introduces simplifying restrictions upon the interactions, e.g.,

UPS(r) and UPV (r) become zero. By applying these restrictions to the scalar

term in the Hamiltonian, the function US(r) is independent of angle. The
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contraction of vector potential and tensor potential can be expressed as

γµU
µ
V (r) = γ0U

0
V (r)− γ·UV (r) = γ0U

0
V (r)− γrU r

V (r)

σµνU
µν
T (r) = −γ0γ·UT (r) = −γ0γrU r

T (r).

The Eq. (32) becomes

{α·p+β[m+US(r)+γ0U
0
V (r)−γrU r

V (r)−γ0γrU r
T (r)]}Ψ(r) = EΨ(r). (33)

The scalar and zeroth term of the vector potential must be rotationally in-

variant and thus every term become only a function of the magnitude of

the variable r. For local and time-independent interactions, hermiticity and

time reversal invariance require U r
T (r) to be pure imaginary. However, since

hermiticity requires U r
V (r) to be real while time reversal invariance requires

it to be imaginary it vanishes. One must choose appropriate scalar and vec-

tor potentials that provide the dominant central and spin orbit interactions

to obtain elastic scattering observables. These are referred to as the scalar

potential US(r) = S(r), the vector potential UV (r) = V (r), and is called the

S-V model. Experiment requires that the potentials be large, several hundred

MeV in strength, with the scalar attractive and the vector repulsive. By an

extensive fitting to the experimental data the S-V model is recommended [? ]

over the others. The single particle wavefunction of good angular momentum

J2, Jz, parity P and time reversal symmetry T in Eq. (33) has the following

form

Ψ(r) =

 fκ(r)χ
µ
κ(r̂)

igκ(r)χ
µ
−κ(r̂)

 . (34)

The coupled radial differential equations can be written by

dfκ
dr

= −κ+ 1

r
fκ(r) + [m+ E + S(r)− V (r)]gκ
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FIG. 2: Relativistic 3s1/2 wave function in 208Pb. The solid line is fκ and the dash line is gκ.

dgκ
dr

=
κ− 1

r
gκ(r) + [m− E + S(r) + V (r)]fκ(r). (35)

We can obtain the radial functions fκ(r) and gκ(r) by solving the two differ-

ential equations numerically. Fig. 2 shows that the radial wave function for

3s1/2 state of 208Pb as an example.

Using the global optical potential, obtained from fitting elastic proton

scattering data, the knocked-out proton can be described by scalar and vector

potentials similar to the bound state potentials except that they contain an

imaginary part to describe loss of flux from the elastic channel. The wave

function for the outgoing nucleon has the same structure as the outgoing

electron wave function (14):

Ψp(r) =
∑
κpµp

Cκpµp
e−iδ∗κpψµp

κp
(r) (36)
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where ψ
µp
κp (r) and Cκpµp

are given by

ψµp
κp
(r) =

 f ∗κp
(r)χ

µp
κp(r̂)

g∗κp
(r)χ

µp

−κp
(r̂)


and

Cκpµp
=

√
Ep +M

2Ep
4π(i)lp < lpµp − s

1

2
s|jpµp > Y

µp−s
lp

∗
(p̂)

and the ∗ denotes the complex conjugate.
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III. The Quasi-elastic Electron Scattering

In our calculation, we make the following assumptions:

• The incoming and outgoing electrons are described by distorted wave

function due to the nuclear static Coulomb potential of the target.

• The virtual photon emitted by the electron is absorbed by a single nu-

cleon.

• The ejected nucleon interacts with the residual nucleus through a rela-

tivistic optical potential.

• The target nucleus is described by a relativistic independent particle

model with the scalar and vector average potentials being determined

in the Hartree approximation of the σ − ω model.

There are two processes: One is called the exclusive (e, e′p) reaction by

detecting simultaneously the final electron and the knocked-out nucleon. The

other one is called the inclusive (e, e′) reaction by detecting only the final

electron.

3.1 Plane Wave Born Approximation (PWBA) and Rosenbluth Separation

In PWBA, both the incoming and outgoing electrons are described by

the plane wave solutions of the Dirac equation. The well-known transition

matrix element from electrodynamics is given by

Hi =

∫
JµA

µd3r (37)
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where Jµ is the nuclear transition current and Aµ is the four potential gen-

erated by the electron current.

In the Lorentz gauge, the electron potential can be expressed in terms of

the retarded Green function G(r′, r) as

Aµ(r) =

∫
jµ(re)G(re, r)dre, (38)

where

G(re, r) =
eiω|re−r|

|re − r|
.

with the electron position vector re, the nuclear position vector r, and the

energy loss ω. The electron current is given by

jµ = ψ̄f(re)γ
µψi(re). (39)

The electron four potential becomes the Möller potential:

Aµ(r) =
4πe

q2 − ω2
eiq·rū(pf)γµu(pi)

= eiq·raµ, (40)
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where aµ = 4πe
q2−ω2 ū(pf)γµu(pi) and the three momentum transfer q = pi−pf .

In terms of the Möller-type potential, the transition matrix element can be

written as

Hi = aµNµ (41)

where the nuclear form factors can be defined in terms of the nuclear current

density by

Nµ =

∫
Jµ(r)e

iq(r)·rd3r. (42)

The nuclear transition current is given by

Jµ(r) = eψ̄pĴµψb (43)

where Ĵµ is the nucleon current operator and ψb and ψp are the bound and

continuum single particle wave function.

In PWBA, the nuclear form factor is just the Fourier transform of the

current. The cross section for (e, e′p) process can be written as

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

∑
sisfspµb

1

2jb + 1
|Hi|2 (44)

where Iin is the incoming electron flux given by pin/Ein. The si and sf denote

the initial and the final electron spin, and sp and µb are the outgoing and

the bound nucleon spin projections. The density of states ρe and ρp have the

same form for outgoing electrons and nucleons and are given by the Fermi

phase space as

dp = ρdEdΩ

ρ =
pE

(2π)3
(45)

where p and E are outgoing electron (nucleon) momentum and energy.
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3.2 The Matrix element

In order to calculate the matrix element, we need to know the nuclear

transition current which is given by

Jµ(r) = eψ̄pĴµψb (46)

where Ĵµ is the nuclear current operator. For a free nucleon, the operator

consists of two parts, namely, the Dirac contribution and the contribution of

the anomalous magnetic moment µT :

Ĵµ = F1γ
µ + F2

iµT
2mN

σµνqν. (47)

The charge density (zero component) and the three vector current are given

by

Ĵ0 = F1γ
0 +

µT
2mN

F2α·q (48)

Ĵ = F1γ +
µT
2mN

F2q
0α+

iµT
2mN

F2Σ×q (49)

where µT is the nucleon anomalous magnetic moment (for proton µT = 1.793

and for neutron µT = −1.91). Note q0 = ω and q is an operator in con-

figuration space. The nuclear form factors F1 and F2 are evaluated at four

momentum transfer qµ. They are related to the electric and magnetic form

factors GE and GM by

GE = F1 +
µT q

2
µ

4M 2
F2 (50)

GM = F1 + µTF2. (51)

We choose the standard result:

GE = GM/(µT + 1) = (1− q2µ/0.71)
−2 (52)
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where in this formula qµ is in units of GeV. By using this current operator,

the Fourier transform of the nucleon current density Eq. (42) can be written

as

Nµ =

∫
Jµ(r)e

iq·rd3r. (53)

If we choose a well-defined q, the longitudinal and transverse parts of the

three vector current are defined by the following relations:

JL = J·q̂ (54)

JT = q̂×(J×q̂) (55)

with

J = JL + JT. (56)

The current conservation for the nucleon and electron becomes qµJµ = qµa
µ =

0. Using these relations, the transition matrix element becomes

Hi =

∫
(a0J0 − a·J)eiq·rd3r

=

∫
[(1− ω2

q′2
)a0J0 − a·J]eiq·rd3r (57)

and we can define the modified Fourier transform of the nucleon current

density as a four vector in Eq. (53);

Nµ = (N0, Nx, Ny, 0) = (N0, N1, N2, 0) (58)

where

N0 =

∫
−
q2µ
q2
J0e

iq·rd3r (59)

Nx =

∫
Jxe

iq·rd3r (60)

Ny =

∫
Jye

iq·rd3r. (61)
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The cross section can be separated into the electron and nuclear com-

ponents by defining an electron tensor (lepton tensor) in the conventional

manner;

ηµν =
∑
sisf

[ū(pf)γ
µu(pi)]

∗[ū(pf)γ
νu(pi)] (62)

and a nuclear tensor (hadronic tensor);

Wµν =
∑
spµb

N ∗
µNν. (63)

By using the relations, the cross section for (e, e′p) reaction becomes

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

1

2jb + 1

∑
sisfsPµb

|Hi|2

=
1

2

2π

Iin
ρeρp

1

2jb + 1

∑
sisfsPµb

(4πα)2

q4µ
|ū(pf)γµNµu(pi)|2

=
1

2

2π

Iin
ρeρp

1

2jb + 1

(4πα)2

q4µ

∑
sisfsPµb

ηµνWµν. (64)

3.3 Rosenbluth Separation

In the extreme relativistic limit (me = 0), the sum over labels of the

electron tensor can be explicitly carried out using the spin projection operator

for the initial electron and the Trace Theorem:

ηµν =
∑
sisf

[ū(pf)γ
µu(pi)]

∗[ū(pf)γ
νu(pi)] =

1

8
Tr[̸ pfγ

µ(1 + hγ5) ̸ piγν]

=
1

2pipf
[pµi p

ν
f + pνi p

µ
f − gµν(EiEf − pi·pf) + ihϵµνδλpf δpiλ] (65)

where h is +1 for positive electron helicity and −1 for negative electron

helicity.
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The first three terms of the electron tensor in Eq. (65) are symmetric with

respect to interchanging µ and ν, and independent of the electron helicity.

However, the last term is antisymmetric for µ and ν, and depends on the

electron helicity h. Therefore, the electron tensor can be written as the

summation of a symmetric and an antisymmetric tensor:

ηµν = ηµνS + ηµνA . (66)

The general form of a nuclear tensorWµν can be constructed with the energy

momentum four vectors qµ, pµ, and pµb using four momentum conservation,

and electromagnetic current conservation requires qµWµν = qνWνµ = 0. Thus,

the nuclear tensor can be written as

Wµν = W1gµν +W2pbµpbν +W3pµpν

+ W4(pbµpν + pbνpµ) +W5(pbµpν − pbνpµ). (67)

The constraints were satisfied by constructingWµν from a complete set of four

vectors and second rank tensors. Each coefficient W1–W5 depends only on

Lorentz scalars involving the momentum transfer and the hadron momenta.

This nuclear tensor, just as the electron tensor, consists of a symmetric and

an antisymmetric part in the labels µ ν. The first four terms of the nuclear

tensor are symmetric and the last term is antisymmetric under interchanging

µ and ν:

Wµν = W S
µν +WA

µν. (68)

Since the contraction of a symmetric and an antisymmetric tensor yields zero,

the contraction of the electron and nuclear tensor can be written as

ηµνWµν = ηµνS W
S
µν + ηµνA W

A
µν. (69)
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By using the contraction of electron and nuclear tensors, the cross section

for electron scattering from a unpolarized target is given by

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

1

2jb + 1

(4πα)2

q4µ
(ηµνs W

S
µν + ηµνA W

A
µν)

=
pEp

(2π)3
σM [

q4µ
q4
RL + (tan2

θe
2
−

q2µ
2q2

)RT −
q2µ
2q2

cos 2ϕpRTT

−
q2µ
q2
(tan2

θe
2
−
q2µ
q2
)1/2cosϕpRLT − h

q2µ
q2
tan

θe
2
sinϕpRLT ′],(70)

where

RL(q, ω) =
q4

q4µ
W00, RT (q, ω) = W11 +W22

cos 2ϕPRTT (q, ω) = W11 −W22, cosϕPRLT (q, ω) = −q
2

q2µ
(W01 +W10)

sinϕPRLT ′(q, ω) = −iq
2

q2µ
(W02 +W20).

σM denotes the Mott cross section given by σM = ( α
2E )

2 cos
2 θe

2

sin4 θe
2

. The missing

momentum is defined as pm = p− q.

3.3 Response Function and Asymmetry

The fourth structure function could be obtained by subtracting the cross-

sections at azimuthal angles of the outgoing proton ϕp = 0 and ϕp = π and

keeping the other electron and outgoing proton kinematics variables fixed.

The fourth structure function is a function of the missing momentum given

by

RLT =
σR − σL

2KvLT
, (71)
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FIG. 4: The cross-sections from the p1/2 and p3/2 orbits of 16O targets as a function of the missing

momentum. The incident electron energy is 2441.6 MeV, the proton kinetic energy is 427 MeV,

and the energy transfer is 436 MeV. The solid lines are the approximate DWBA calculations, the

dotted lines are the PWBA calculations, and the data are from Jlab.

where L (left) and R (right) indicate the left side at ϕp = 0 and the right

side at ϕp = π of the cross-section, respectively. Of course, this fourth

structure function can be directly calculated in the PWBA. If the incident

electron beam is polarized, helicity h=1, one can obtain the fifth structure

function by subtracting the down part (−π < ϕp < 0) from the up part

(0 < ϕp < π) of the cross-section with respect to the scattering plane, while

all other kinematics variables are kept the same. The apparent fifth structure

function can be written as

RLT ′ =
σU − σD

2KvLT ′sinϕp
, (72)

where U and D indicate the “up” and “down” part of the cross-section,
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FIG. 5: The fourth structure functions from the p1/2 and p3/2 orbits of 16O as a function of the

missing momentum. The solid lines are the extracted fourth functions for the DWBA results, the

dotted lines are the PWBA results, and the diamonds are data from Jlab.

respectively. This clearly describes the “up-down” asymmetry of the cross-

section with respect to the scattering plane. We also calculate another left-

right asymmetry, ALT , defined as

ALT =
σR − σL

σR + σL
. (73)

In this case, the kinematics is the same as for the fourth structure function

in eq. (71).
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FIG. 6: The asymmetry for the 16O target.

3.4 Inclusive (e, e′) reaction

In inclusive processes, the ejected nucleons are not observed, whereas they

are observed in the exclusive processes. The cross section in the (e, e′) reac-

tion can be calculated by integrating over the ejected nucleon angle dΩp and

summing over all the possible channels for the excited nuclear system. We

consider the PWBA calculation with the partial wave expansion. The ex-

plicit form for the nuclear form factors N0 and NT in the PWBA are defined

as the Fourier transforms of the nuclear transition current;

N0 =

∫
J0(r)e

iq·rd3r (74)

NT =

∫
JT(r)e

iq·rd3r

=
∑
λ=±1

ξ̂∗λ

∫
J(r)·ξ̂λeiq·rd3r (75)
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where q is an asymptotic momentum transfer along the ẑ-direction and JT =

J+ξ̂
∗
+ + J−ξ̂

∗
− in the spherical coordinate, which is given by ξ̂0 = ẑ, ξ̂±1 =

∓ 1√
2
(x̂ ± iŷ). By using the partial wave expansion, we can easily get the

longitudinal term in the form;

N0 =
√
4π

∑
κpµpmp

∑
LM

√
2L+ 1 < lpmp,

1

2
sp|jpµp > Y

mp

lp

∗
(p̂)e−iδ∗κp

< jbµb, LM |jpµp > Rκpκb
(q;L). (76)

The transverse term can be written in spherical coordinates

NT = N+ξ̂
∗
+ +N−ξ̂

∗
− (77)

where

N+ =
√
2π

∑
κpµpmp

∑
LM

√
2L+ 1 < lpmp,

1

2
sp|jpµp > Y

mp

lp

∗
(P̂ )e−iδ∗κp

< jbµb, LM |jpµp > [Rκpκb
(q;M) +Rκpκb

(q;E)] (78)

N− = −
√
2π

∑
κpµpmp

∑
LM

√
2L+ 1 < lpmp,

1

2
sp|jpµp > Y

mp

lp

∗
(p̂)e−iδ∗κp

< jbµb, LM |jpµp > [Rκpκb
(q;M)−Rκpκb

(q;E)]. (79)

The label L, M and E denote the longitudinal, magnetic and electric terms.

By using the Dirac multipole operator matrix element given in the Appendix,

we have each term explicitly;

Rκppκb
(q;L) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb
(i)lp+LIL(κp, κb)∫

drr2{F1(f
∗
κp
fκb

+ g∗κp
gκb

)jL(qr) +
µTF2q

2M(2L+ 1)

[(−LjL−1(qr) + (L+ 1)jL+1(qr))(f
∗
κp
gκb

+ g∗κp
fκb

)

+(κp − κb)(jL−1(qr) + jL+1(qr))(f
∗
κp
gκb

− g∗κp
fκb

)]} (80)
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Rκpκb
(q;M) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb

(i)lp+L+1√
L(L+ 1)

IL(κp,−κb)∫
drr2{F1(κp + κb)(f

∗
κp
gκb

+ g∗κp
fκb

)jL(qr)

+
µTF2ω

2M
(κp + κb)(f

∗
κp
gκb

− g∗κp
fκb

)jL(qr)

+
µTF2ω

2M(2L+ 1)
[L(L+ 1)(f ∗κp

fκb
− g∗κp

gκb
)

(jL−1(qr) + jL+1(qr)) + (κp + κb)

(LjL+1(qr)− (L+ 1)jL−1(qr))(f
∗
κp
fκb

+ g∗κp
gκb

)]} (81)

Rκpκb
(q;E) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb

(i)lp+LIL(κp, κb)

(2L+ 1)
√
L(L+ 1)∫

drr2{F1[(κp − κb)(f
∗
κp
gκb

+ g∗κp
fκb

)(LjL+1(qr)− (L+ 1)

jL−1(qr)) + L(L+ 1)(f ∗κp
gκb

− g∗κP
fκb

)(jL−1(qr) + jL+1(qr))]

+
µTF2ω

2M
[L(L+ 1)(f ∗κp

gκb
+ g∗κp

fκb
)(jL−1(qr) + jL+1(qr))

+(κp − κb)(f
∗
κp
gκb

+ g∗κp
fκb

)(Lj+−1(qr)− (L+ 1)jL−1(qr))]

−µTF2q

2M
(2L+ 1)(κp − κb)jL(qr)(f

∗
κp
fκb

+ g∗κp
gκb

)}. (82)

In the (e, e′) process, the longitudinal and the transverse structure functions

remain after integrating the cross section in Eq. (70) over the solid angle

dΩP of the ejected nucleon. We sum over all quantum numbers and use the

following orthogonalities; ∫
dΩpY

mp

lp

∗
(p̂)Y

m′
p

l′p
(p̂) = δlpl′pδmpm′

p∑
mpsp

< lpmp,
1

2
sp|jpµp >< lpmp,

1

2
sp|j′pµ′p > = δjpj′pδµpµ′

p∑
µpµb

< jbµb, LM |jpµp >< jbµb, L
′M ′|jpµp > =

2jp + 1

2L+ 1
δLL′δMM ′.
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Finally, the longitudinal and the transverse structure functions become

Rin
L =

∫
ρpRLdΩp =

ρp
2(2jb + 1)

∑
µbsp

∫
|N0|2dΩp

=
4πρp

2(2jb + 1)

∑
κPLM

(2jp + 1)e2Im(δκp)|Rκpκb
(q;L)|2 (83)

Rin
T =

∫
ρpRTdΩp =

ρp
2(2jb + 1)

∑
µbsp

∫
(|N+|2 + |N−|2)dΩp

=
4πρp

2(2jb + 1)

∑
κpLM

(2jp + 1)e2Im(δκp)(|RκPκb
(q;M)|2

+ |Rκpκb
(q;E)|2) (84)

where Im(δκP
) is the imaginary part of the phase shift for the ejected nucle-

ons. In terms of the structure functions, the cross section in (e, e′) reaction

is given by

d2σ

dEfdΩf
= σM [

q4µ
q4
Rin

L (q, ω) + (tan2
θe
2
−

q2µ
2q2

)Rin
T (q, ω)] (85)

where qµ is the four momentum transfer and σM is the Mott cross section.

The structure functions depend only on the momentum transfer and the

energy transfer.

From the measured cross section in Eq. (85), the total structure function

is defined as

Stot(q, ω, θ) =

(
ϵ(θ)

σM

)(
q4

Q4

)
d2σ

dΩfdω
, (86)

where the ϵ(θ) is the virtual photon polarization.

Therefore, the total structure function in Eq. (86) becomes

Stot(q, ω, θ) = ϵ(θ)Rin
L (q, ω) +

(
q2

2Q2

)
Rin

T (q, ω). (87)
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FIG. 7: The comparison with Saclay data for 208Pb.

Stot is described as a straight line in terms of the independent variable ϵ(θ)

with slope RL(q, ω) and intercept proportional to RT (q, ω) by keeping the

momentum transfer q and the energy transfer ω fixed.

The CSR is defined as the integration of the total longitudinal structure

function in Eq. (87) for inclusive (e, e′) reaction

C(q) =
1

Z

∫ ∞

ωmin

Rin
L (q, ω)

G̃2
E(Q

2)
dω, (88)

with the electric form factor given by

G̃2
E(Q

2) =

[
G2

Ep(Q
2) +

N

Z
G2

En(Q
2)

]
(1 + τ)

(1 + 2τ)
, (89)

where Z and N are number of protons and neutrons of the target, respec-

tively. GEp and GEn are the Sachs electric form factors for the protons and

neutrons, respectively. The last factor corresponds to the relativistic cor-

rection factor, in which τ is given by τ = Q2/4M 2
N with the nucleon mass

MN .

28



0.5

0.6

0.7

0.8

0.9

1.0

1.1

300 400 500

C
(q

)

q (MeV/c)

40Ca
208Pb

FIG. 8: The Coulomb sum rule for our model in terms of q values. The solid circles are for 40Ca

and the solid rectangles are for 208Pb, respectively.

3.5 Inclusion of Electron Coulomb Distortion

Under the electron Coulomb distortion, the Rosenbluth in Eq. (70) is not

valid any more and we need the multipole expansion. For the scalar terms,

the Green function can be expanded as follows:

G(r, r′) =
eiω|r−r′|

|r− r′|
= 4πiω

∑
LM

jL(ωr<)hL(ωr>)Y
M
L (r̂)Y M

L
∗
(r̂′). (90)

For the vector current terms, one can expand the Green function with the

Dyadic I in vector spherical harmonics:

↔
G(r, r′) = I

↔
G(r, r′)

= 4πiω
∑
JLM

jL(ωr<)hL(ωr>)Y
M
JL(r̂)Y

M
JL

∗
(r̂′), (91)
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where jL and hL denote the spherical Bessel and Hankel functions, respec-

tively. The vector spherical harmonic function is defined as

YM
JL(r̂) =

∑
µ

< LM − µ, 1µ|JM > Y M−µ
L (r̂)ξ̂. (92)

In terms of these definitions, the transition matrix element is written as:

Hi = −4πiω
∑
LM

{
∫ ∞

0

ρeY M
L

∗
(r̂)[hL(ωr)

∫ r

0

ρNjL(ωr
′)Y M

L (r̂′)d3r′

+ jL(ωr)

∫ ∞

r

ρNhL(ωr
′)Y M

L (r̂′)d3r′]d3r

−
∑
J

∫ ∞

0

j·YM
LJ

∗
(r̂)[hJ(ωr)

∫ r

0

J·YM
LJ(r̂

′)jJ(ωr
′)d3r′

+ jJ(ωr)

∫ ∞

r

J·YM
LJ(r̂

′)hJ(ωr
′)d3r′]d3r}. (93)

The scalar part of the nucleon current is given by∫
ψ̄pĴ0ψbjL(ωr)Y

M
L (r̂)dΩ =< Jbµb, LM |Jpµp > IL(κp, κb)K

N
S (r), (94)

where the radial integration KS(r) can be written as

KN
S (r) = F1(fκp

fκb
+ gκp

gκb
)jL(ωr) +

F2µTω

2M

1

2L+ 1

× [(fκp
gκb

+ gκp
fκb

)((L+ 1)jL+1(ωr)− LJL−1(ωr))

+ (κp − κb)(fκp
gκb

− gκp
fκb

)(jL+1(ωr) + jL−1(ωr))]. (95)

The vector terms become∫
ψ̄pĴψbjL(ωr)·YM

L L(r̂)dΩ = < Jbµb, LM |Jpµp > IL(−κp, κb)

× KN
V (r, L) (96)∫

ψ̄pĴψbjL(ωr)·YM
L L−1(r̂)dΩ = < Jbµb, LM |Jpµp > IL(κp, κb)

× KN
V (r, L− 1) (97)∫

ψ̄pĴψbjL(ωr)·YM
L L+1(r̂)dΩ = < Jbµb, LM |Jpµp > IL(κp, κb)

× KN
V (r, L+ 1), (98)
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where the KV ’s are defined in the following way:

KN
V (r, L) =

−i√
L(L+ 1)

{jL(ωr)(κp + κb)[F1(fκp
gκb

+ gκp
fκb

)

+
F2µTω

2M
(fκp

gκb
− gκp

fκb
)] +

µTω

2M

F2

2L+ 1
[(κp + κb)

× (fκp
gκb

+ gκp
fκb

)(LjL+1(ωr)− (L+ 1)jL−1(ωr))

+ L(L+ 1)(fκp
gκb

− gκp
fκb

)(jL+1(ωr) + jL−1(ωr))]} (99)

KN
V (r, L− 1) =

i√
L(2L+ 1)

{jL−1(ωr)[(F1(κp − κb)− L
F2µTω

2M
)

× (fκp
gκb

+ gκp
fκb

) + ((κp − κb)
F2µTω

2M
− LF1)(fκp

gκb
− gκp

fκb
)]

+
F2µTω

2M
(κp − κb)jL(ωr)(fκp

fκb
+ gκp

gκb
)} (100)

KN
V (r, L+ 1) =

i√
(L+ 1)(2L+ 1)

{jL+1(ωr)[(F1(κp − κb)

+ (L+ 1)
F2µTω

2M
)(fκp

gκb
+ gκp

fκb
) + ((κp − κb)

F2µTω

2M

+ (L+ 1)F1)(fκp
gκb

− gκp
fκb

)]− F2µTω

2M
(κp − κb)jL(ωr)

× (fκp
fκb

+ gκp
gκb

)} (101)

In the same way, the corresponding integrals for the electron part are given

by ∫
ψ̄f ĵ0ψijL(ωr)Y

M
L

∗
(r̂)dΩ = (−1)M < Jiµi, L−M |Jfµf > IL(κf , κi)

× KE
S (r), (102)

and ∫
ψ̄f ĵψijL(ωr)·YM

L J
∗
(r̂)dΩ = < Jiµi, L−M |Jfµf > IL(−κf , κi)

× (−1)L+J+M+1KE
V (r, J), (103)
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FIG. 9: Reduced cross sections for 208Pb(e, e′p) from the 3s1/2 shell with parallel kinematics. The

kinematics are E=412 MeV, and proton kinetic energy T=100 MeV. The dotted line is the PWBA

result and the dash-dotted line, the solid line is the approximate DWBA result, and the diamonds

are data from NIKHEF.

where J represents L, L + 1, and L − 1. For the multipoe expansion, the

disadvantages are that the Rosenbluth in Eq. (70) is no longer valid and the

computational time increases rapidly with higher energies.

In our analysis we are looking at one particular shell, and trying to find

the reduced cross section ρm , which for plane waves in the final state is

related to the probability that a bound proton from a given shell with the

missing momentum pm can be knocked out of the nucleus with asymptotic

momentum P. The reduced cross section as a function of pm is commonly

defined by

ρm(pm) =
1

pEpσep

d3σ

dEfdΩfdΩp
, (104)

where σep denotes the off-shell electron-proton cross section (Fig.9) .
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Appendix : Reduced Matrix Elements of Multipole Operators

The following angular matrix elements are needed to evaluate the transi-

tion matrix element. The matrix element for the spin angle function can be

written by

< κ′µ′|Ô|κµ >=
∫
χκ′

µ′(r̂)
†
Ôχκ

µ(r̂)dΩ (105)

for any operator Ô.

The matrix element about a spherical harmonic operator becomes

< κ′µ′|Y M
L |κµ > =

∫
χκ′

µ′(r̂)
†
Y M
L (r̂)χκ

µ(r̂)dΩ

= < jµ, LM |j′µ′ >< κ′∥Y M
L ∥κ > (106)

where the double-bar matrix element is called the reduced matrix element.

It is independent on the magnetic quantum numbers and is given by

IL(κ
′, κ) = < κ′∥Y M

L ∥κ >

= (−1)j+j′−L−1

√
(2j + 1)(2L+ 1)

4π(2j′ + 1)
< j

1

2
, L0|j′1

2
> . (107)

The other multipole matrix elements with Dirac spinor become

< κ′µ′|σ·YM
L L|κµ > =

κ− κ′√
L(L+ 1)

< κ′µ′|Y M
L |κµ > (108)

< κ′µ′|σ·YM
L L−1|κµ > =

κ′ + κ− L√
L(2L+ 1)

< κ′µ′|Y M
L | − κµ > (109)

< κ′µ′|σ·YM
L L+1|κµ > =

κ′ + κ+ L+ 1√
(L+ 1)(2L+ 1)

< κ′µ′|Y M
L | − κµ > . (110)

The reduced matrix elements for vetor spherical harmonic operator and

spin operator are given by

< κ′µ′∥σ·YM
L L∥κµ > =

κ− κ′√
L(L+ 1)

IL(κ
′, κ) (111)
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< κ′µ′∥σ·YM
L L−1∥κµ > =

κ′ + κ− L√
L(2L+ 1)

IL(κ
′,−κ) (112)

< κ′µ′∥σ·YM
L L+1∥κµ > =

κ′ + κ+ L+ 1√
(L+ 1)(2L+ 1)

IL(κ
′,−κ). (113)

In evaluating the transition amplitude, we need the following multiple anal-

ysis relationship;

< ψp|γ·YM
L L|ψb > =

∫
ψp

†γ·YM
L LψbdΩr

=
i(κb + κp)√
L(L+ 1)

(−fκp
gκb

+ gκp
fκb

)

× < jbµb, LM |jpµp > IL(κp,−κb) (114)

< ψp|α·YM
L L|ψb > =

∫
ψp

†α·YM
L LψbdΩr

=
i(κb + κp)√
L(L+ 1)

(−fκp
gκb

− gκp
fκb

)

× < jbµb, LM |jpµp > IL(κp,−κb) (115)

< ψp|γ0Σ·YM
L L|ψb > =

∫
ψp

†γ0Σ·YM
L LψbdΩr

=
κb − κp√
L(L+ 1)

(fκp
fκb

+ gκp
gκb

)

× < jnµb, LM |jpµp > IL(κp, κb) (116)

< ψp|α·YM
L L−1|ψb > =

∫
ψp

†α·YM
L L−1ψbdΩr

=
i√

L(2L+ 1)
[(κp − κb)(fκp

gκb
+ gκp

fκb
)

− L(fκp
gκb

− gκp
fκb

)]

× < jbµb, LM |jpµp > IL(κp, κb) (117)
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< ψp|γ·YM
L L−1|ψb > =

∫
ψp

†γ·YM
L L−1ψbdΩr

=
i√

L(2L+ 1)
[(κp − κb)(fκp

gκb
− gκp

fκb
)

− L(fκp
gκb

+ gκp
fκb

)] < jbµb, LM |jpµp >

× IL(κp, κb) (118)

< ψp|γ0Σ·YM
L L−1|ψb > =

∫
ψp

†γ0Σ·YM
L L−1ψbdΩr

=
1√

L(2L+ 1)
[(κp + κb)(fκp

fκb
+ gκp

gκb
)

− L(fκp
fκb

− gκp
gκb

)]

× < jbµb, LM |jpµp > IL(κp,−κb) (119)

< ψp|α·YM
L L+1|ψb > =

∫
ψp

†α·YM
L L+1ψbdΩr

=
i√

(L+ 1)(2L+ 1)
[(κp − κb)(fκp

gκb
+ gκp

fκb
)

+ (L+ 1)(fκp
gκb

− gκp
fκb

)]

× < jbµb, LM |jpµp > IL(κp, κb) (120)

< ψp|γ·YM
L L+1|ψb > =

∫
ψp

†γ·YM
L L+1ψbdΩr

=
i√

(L+ 1)(2L+ 1)
[(κp − κb)(fκp

gκb
− gκp

fκb
)

+ (L+ 1)(fκp
gκb

+ gκp
fκb

)]

× < jbµb, LM |jpµp > IL(κp, κb) (121)
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< ψp|γ0Σ·YM
L L+1|ψb > =

∫
ψp

†γ0Σ·YM
L L+1ψbdΩr

=
1√

(L+ 1)(2L+ 1)
[(κp + κb)(fκp

fκb
+ gκp

gκb
)

+ (L+ 1)(fκp
fκb

− gκp
gκb

)]

× < jbµb, LM |jpµp > IL(κp,−κb). (122)
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