Introduction to Hard Probes in Heavy Ion Collisions

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

11th Nuclear Physics Summer School Jeju Island, Korea, June 2013

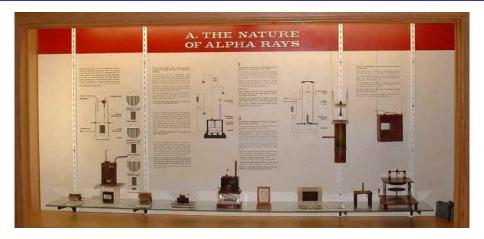
Jeon (McGill)

Jeju 2013 1 / 68

Jeon (McGill)

Hard Probes

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Jeon (McGill)

Mr. McGill going home after a hard day's work.

Jeon (McGill)

Rutherford carried out his Nobel (1908) winning work at McGill (1898-1907). His *original* equipments on display

Jeon (McGill)

Hard Probes

- Charles Gale
- Sangyong Jeon
- Björn Schenke (Formerly McGill, now BNL)
- Clint Young (Formerly McGill, Now UMinn)
- Gabriel Denicol
- Matt Luzum

- Sangwook Ryu
- Gojko Vujanovic
- Jean-Francois Paquet
- Michael Richard
- Igor Kozlov
- Khadija El Berhoumi
- Jean-Bernard Rose

Before I begin... Some thoughts I'd like to share

A .

Disclaimer: These are my own thoughts. Everyone is different. Take these with a grain of salt.

- Passion for Physics!
- Communication skill Improve your English
 - Writing skill Writing guide books help A good one: *BUGS in Writing: A Guide to Debugging Your Prose*, by Lyn Dupre
 - Presentation skill Have a look at R. Geroch's *"Suggestions for Giving Talks"*, arXiv:gr-qc/9703019v1.
 - Debate skill Practice thinking in English
 - Social communication skill Read novels (paperbacks are better), watch sitcoms, know the culture, slang, ...

Approach it as if you're writing a story Story <u>Arti</u>

- Introduction Make the reader interested in the rest of the story
- Expanding the story Main characters, main events, conflicts, puzzles, ...
- Resolution Story escalates to the ultimate resolution by a big battle, saved by the heroes/heroines.
- Ending Tie up loose ends. Make the reader want to read the sequel.

<u>Árticle/Talk</u>

- Introduction Make the reader interested in the rest of the paper/talk
- Expanding the point Main physics points, main data, conflicts, puzzles, ...
- Resolution What big physics the new data/theory illuminates/resolves. Saved by the heroes/heroines.
- Conclusion Tie up loose ends. Make the reader want to read the sequel.

On to Physics

Jeon ((McGill)

* 王

・ロト ・回ト ・ヨト

• Why do it?

- To study QGP
- Most extreme environment ever created: $T \sim 1 \, \text{GeV}$. This existed only at around 1 microsecond after the Big Bang
- How do we understand it?
 - Theory: Many-body QCD
 - Experimental probes:
 - Soft
 - Hard

- E - N

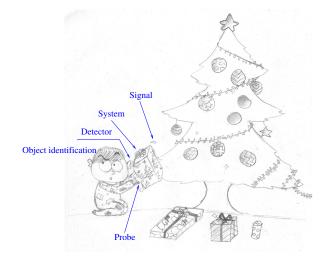
- Hard Probes \sim Large momentum/energy phenomena
- pQCD applies We know how to do this
- Produced *before* QGP is formed in the same way as in hadron-hadron collisions
- Difference between *pp*, *pA* and *AA* tells us about the medium.
- Caveat: How well do we know the nuclear initial state?

Medium properties

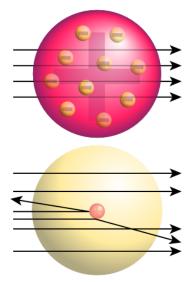
- What is it made of? Quarks? Gluons? Hadrons?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools
 - Jets
 - Hard Photons

pQCD

- 2 Jet Quenching
- Hard Photons


イロト イヨト イヨト イヨト

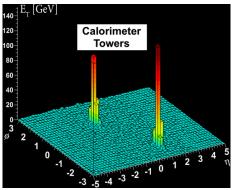
• Early hard probe experiments


What is a hard probe?

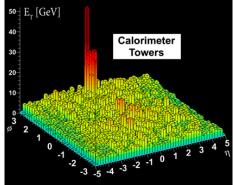
Early hard probe experiments

What is a hard probe?

• Early hard probe experiments



• Rutherford's α scattering experiment


$$\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2}Z^2\alpha_{\rm EM}^2\left(\frac{\hbar c}{E_{\rm kin}}\right)^2 \times \frac{1}{(1-\cos\theta)^2}$$

- Small angle scattering dominates $d\sigma/d\cos\theta \propto 1/\theta^4$
- But backscattering prob. is finite, favoring Rutherford's model over Thompson's (which causes no backscattering)

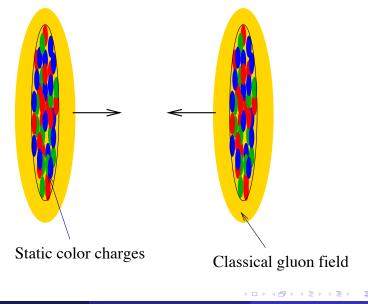
Fast-forward to the present

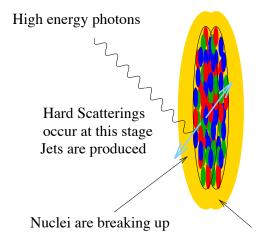
ATLAS: Intact dijets in Pb+Pb

ATLAS: One jet is fully quenched in Pb+Pb

- Simplest conclusion to draw: The medium is opaque.
- We want to know much more than that!

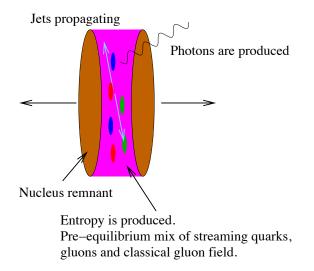
- Must be known & calculable using pQCD.
- Must be created *before* QGP forms

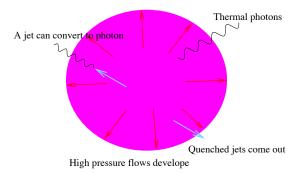

Both requirements satisfied if the energy scale is much large compared to $\Lambda_{QCD}\approx 200\,MeV$ and the length (time) scale is much shorter than \sim 1 fm.


Probes

- Propagation of hard partons or "Jets"
- Quarkonium suppression
- High p_T electromagnetic probes (real and virtual photons)

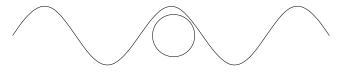
Goal


- To characterize QGP
- To characterize initial state (nPDF, CGC?)



Gluon fields are grabbing each other

Jeon (I	McGill)
---------	---------



-∢ ∃ ▶

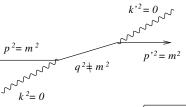
Review of some basic concepts

• Spatial resolution: $\Delta x \Delta p \ge 1/2$

Shorter the wavelength (larger the momentum) sees spatial details up to Δ*x* ≈ λ.

Review of some basic concepts

Energy-Time uncertainty: $|\Delta E|\Delta t \ge 1/2$


•
$$\Delta E = p^0 - \sqrt{\mathbf{p}^2 + m^2}$$
.

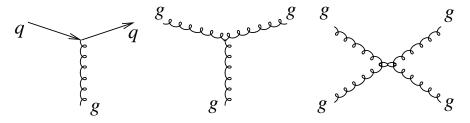
• If
$$\Delta E = 0$$
, then $p^{\mu}p_{\mu} = m^2$: On-shell

• If
$$\Delta E
eq 0$$
, the $p^{\mu}p_{\mu}
eq m^2$: Off-shell

Interpretation

• An off-shell state can exist only for $\Delta t \sim 1/|\Delta E|$.

This interaction lasts $\Delta t \sim 1/|(|\mathbf{p}| + |\mathbf{k}| - \sqrt{(\mathbf{p} + \mathbf{k})^2})|$


Perturbative QCD

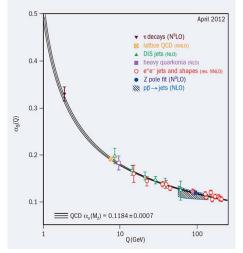
-

イロト イヨト イヨト


Perturbative QCD (pQCD)

QCD – Interaction of quarks and gluons

- N_f flavors of quarks
- $N_c^2 1$ gluons


Perturbative QCD (pQCD)

Of course, things can get complicated.

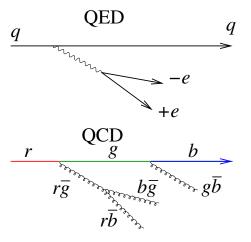
- Tree diagrams of $n \leftrightarrow m$ processes
- Corrections to vertices
- Corrections to propagators

Perturbative QCD (pQCD)

S. Bethke, arXiv:1210.0325.

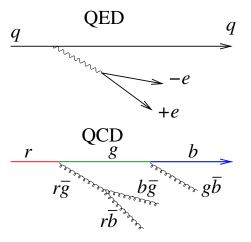
 Perturbative expansion possible because of asymptotic freedom

•
$$Q^2 \frac{\partial \alpha_S}{\partial Q^2} = -\beta_0 \alpha_S^2 - \beta_1 \alpha_S^3 + \cdots$$


•
$$\alpha_{\mathcal{S}}(Q^2) \approx$$

 $\overline{((33-2n_f)/12\pi)\ln(Q^2/\Lambda_{
m QCD}^2)}$

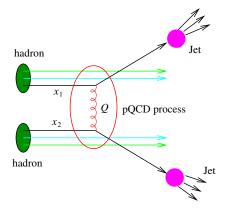
• pQCD reliable for $Q \gtrsim 1 \text{ GeV}$


(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Intuitive understanding of asymptotic freedom

- QED: Surrounded by virtual *ee* cloud
- Virtual −e cloud drawn closer to q > 0 ⇒ Screening
- Larger Q ⇒ smaller distance ⇒ Sees less of the cloud ⇒ Closer to bare charge
- Possible because the original *q* never changes and photons do not carry charges

Intuitive understanding of asymptotic freedom


- QCD: Can resolve more soft virtual gluons at larger *Q*
- The color of the real particle can change whenever a gluon is emitted.
- Larger Q
 —> More frequent changes
 —> Less average color charge
 —> Asymptotic freedom

• As $Q \rightarrow \Lambda_{QCD}$,

$$lpha_{\mathcal{S}}(\boldsymbol{Q}^2) pprox rac{1}{((33-2n_f)/12\pi)\ln(\boldsymbol{Q}^2/\Lambda_{
m QCD}^2)}
ightarrow \infty$$

- Hadrons are $O(\Lambda_{QCD})$ objects.
- Anything that has to do with hadron properties such as color confinement and hadronization is *non-perturbative*.
- In the IR limit, perturbation theory does not work —> Factorize what can be calculated with pQCD (UV) and what cannot be calculated (IR)

Factorization Theorem

Hadron-Hadron Jet production scheme:

$$\sigma = \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ \times \sigma_{ab \rightarrow cd} D_{C/c}(z_C, Q)$$

• • • • • • • • • • • •

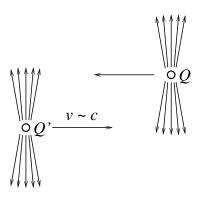
-

Factorization Theorem

How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- *f_{a/h}(x*₁, *Q_f)*: Parton distribution function. Probability to have a parton type *a* with the momentum fraction *x*₁ in a hadron *h*. Depends on the factorization scale *Q_f*.
- D_{C/c}(z_C, Q'_f): Fragmentation function. Probability to create a hadron type C our of parton type c carrying the momentum fraction z_c.
- $\sigma_{ab \rightarrow cd}(Q_R)$: Parton-parton scattering cross-section.


< 回 ト < 三 ト < 三

Factorization Theorem

How realistic pQCD calculations are done

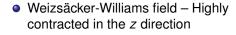
 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- pQCD controls the *evolutions* of $f_{a/h}(x_1, Q_f)$ and $D_{C/c}(z_C, Q'_f)$. But pQCD cannot determine the initial data because this is dominated by IR processes.
- pQCD *can* calculate $\sigma_{ab\to cd}(Q_R)$ when the renormalization scale Q_R can be set high (that is, when \sqrt{s} is large)

- Weizsäcker-Williams field Highly contracted in the *z* direction
- Coulomb potential in the rest frame of the charge

$$\varphi = \mathbf{Q}/|\mathbf{r}|$$

In the moving frame


$$A^{\mu}(x') = \Lambda^{\mu}_{\nu}A^{\nu}(x(x'))$$

• The coordinate in the moving frame x' = (t, x, y, z). This corresponds to the rest frame position

$$\mathbf{x} = (t\gamma - z\gamma \mathbf{v}, \mathbf{x}, \mathbf{y}, z\gamma - t\gamma \mathbf{v}).$$

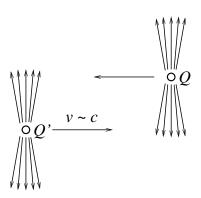
Hard Probes

.

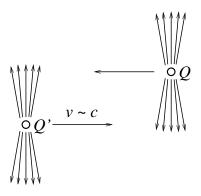
• Coulomb potential in the rest frame of the charge

 $\varphi = \mathbf{Q}/|\mathbf{r}|$

• In the moving frame


$$\mathcal{A}^{\mu} = rac{Q(\gamma, \mathbf{0}, \mathbf{0}, \gamma \mathbf{v})}{\sqrt{(z - vt)^2 \gamma^2 + \Delta \mathbf{x}_{\perp}^2}}$$

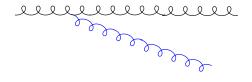
• Pure gauge in the $v \rightarrow 1$ limit


$$A^{\mu} \approx \frac{Q(1,0,0,1)}{|z-vt|} = Q\partial_{\mu} \ln |z-vt|$$

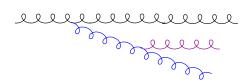
$$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

Hard Probes

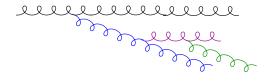
- Weizsäcker-Williams field Highly contracted in the *z* direction
 F^{µν} ≈ 0 unless *z* ≈ *vt*
- In the rest frame: Coulomb field is made up of space-like virtual photons q^μq_μ = -q² with q₀ = 0.
- In the Lab frame: $q'^{\mu} = (q^z \sinh \eta, \mathbf{q}_{\perp}, q^z \cosh \eta)$
- For large η , $|\Delta E| = |q^- - |\mathbf{q}|| \sim e^{-\eta} \mathbf{q}^2/q_z$ $\implies \Delta t \sim 1/|\Delta E| \sim e^{\eta} q_z/\mathbf{q}^2 \implies$ virtual photons look almost like real photons.


- Weizsäcker-Williams field Highly contracted in the *z* direction $F^{\mu\nu} \approx 0$ unless $z \approx vt$
- To a first approximation, the approaching particles *do not* know about each other until they are on top of each other.
- Initial photon momentum distribution factorizes: $F(x_1, x_2) = f(x_1)f(x_2)$ but this is not exact.
- In QCD, color neutrality of hadrons help.

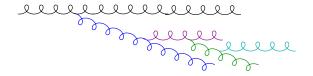
• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .


 Q_0 : Coarse grained. You see one almost on-shell parton.

Jeon	(McGill)
	(


$Q_0 < Q_1$: Start to resolve another parton

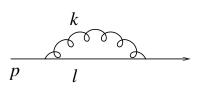
< ∃ >



$Q_0 < Q_1 < Q_2$: And another

- A 🖻 🕨

$Q_0 < Q_1 < Q_2 < Q_3$: And another


You get the idea

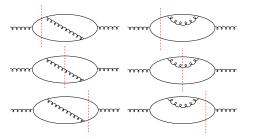
• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

$$Q^2 rac{\partial}{\partial Q^2} \left(egin{array}{c} q^S \ g \end{array}
ight) = rac{lpha_{\mathcal{S}}(Q^2)}{2\pi} \left(egin{array}{c} P_{qq} & 2n_f P_{qg} \ P_{gg} & P_{gg} \end{array}
ight) \otimes \left(egin{array}{c} q^S \ g \end{array}
ight)$$

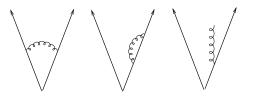
where P_{ij} : Splitting function \sim Probability to end up with *ij* in the final state.

A (1) > A (1) > A

- p is on-shell: $p^2 = 0$
- Diverges when either k or l is on-shell
- This happens either *k* is very soft so that


$$l^2 = (p-k)^2 \approx p^2$$

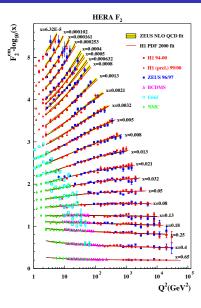
• or p and k are almost collinear


$$l^2 = (p-k)^2 = p^2 + k^2 - 2pk$$

$$\approx 0$$

Splitting can cause IR divergence

- g
 ightarrow q ar q and g
 ightarrow q ar q g
- Only the *sum* is IR finite because soft and collinear divergences
- Splitting functions know about this

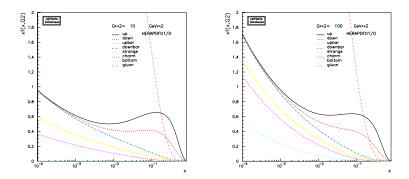

- Observables must be IR safe.

- Splitting function similarly runs
- 3 different scales: Q_f for the pdf, Q_R for σ(Q_R) and Q'_f for the fragmentation function
- In principle, physical observables should not depend on these scales. However, factorization theorem is only *approximate*.
- Lots of freedom to choose the scales. Usually something like

$$Q_f = Q_R = Q'_f = \# p_T$$

works OK where p_T is the momentum of the *final* state particle.

pQCD & Factorization at work


Jeju 2013

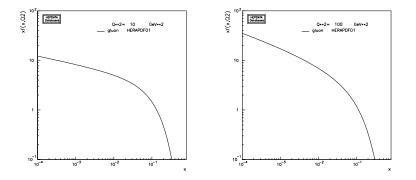
32 / 68

Hard Probes

Jeon (McGill)

pQCD & Factorization at work

CTEQ 06 Proton PDF's


• Larger $Q \implies$ More soft partons

Jeon (McGill)

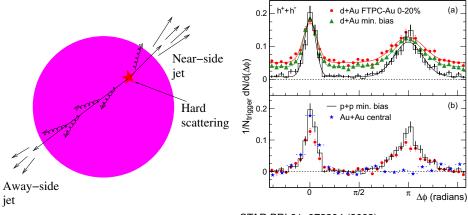
Jeju 2013 33 / 68

* 王

pQCD & Factorization at work

• Gluon distributions for $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 100 \text{ GeV}^2$.

Jeon ((McGill)

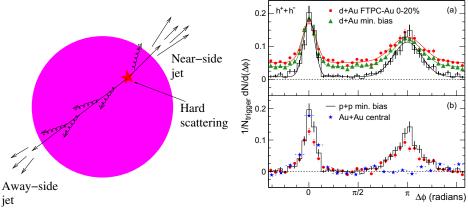

Jeju 2013 34 / 68

Jet Quenching

Medium properties

- What is it made of? QGP or HG?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools Change in jet properties
 - Jet Quenching
 - Jet Broadening

Away side jet disappears! – Proof of principle

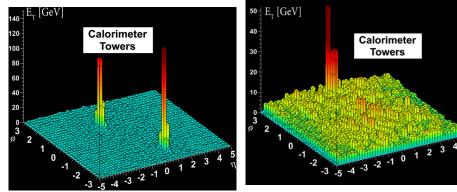


STAR PRL91, 072304 (2003)

< A

< ∃ >

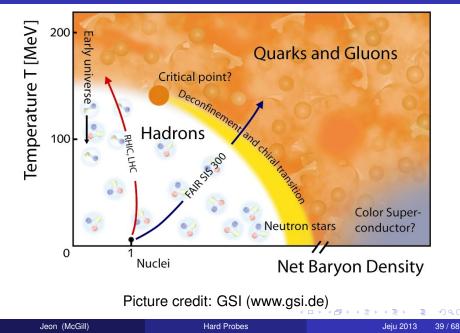
Away side jet disappears! – Proof of principle

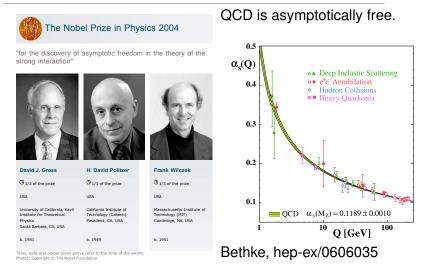


STAR PRL91, 072304 (2003)

Now we need more informative observables to study detailed properties of the medium.

		• 🗗 •	(1) (三)	・「田子」	3	୬୯୯
Jeon (McGill)	Hard Probes			Jeju 2013	3	37 / 68


Away side jet disappears! - Proof of principle


ATLAS: Intact dijets in Pb+Pb

ATLAS: One jet is fully quenched in Pb+Pb

QCD Phase Diagram

Nobelprize.org

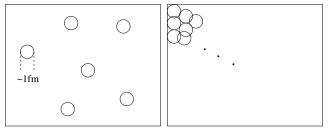
The Official Web Site of the Nobel Foundation

Copyright © Nobel Web AB 2007

Jeon (McGill)

Hard Probes

Jeju 2013 40 / 68


At high T

Running coupling

$$\alpha_{s}(\mu^{2}) = \frac{12\pi}{(33 - 2N_{f})\ln(\mu^{2}/\Lambda_{\text{QCD}}^{2})}$$

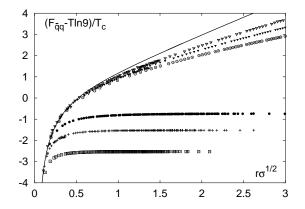
- When $\mu \sim \Lambda_{\rm QCD} \sim$ 200 MeV, the above expression blows up: Not physical. Indicates breakdown of perturbation theory.
- Perturbative QCD is a theory of quarks and gluons *not* hadrons.
- At high *T*, $\mu \sim T$.
- Possible phase transition around $T \sim \Lambda_{QCD}$?
- If $\mu \sim T \rightarrow \infty$, $\alpha_s \rightarrow$ 0: Weakly coupled
- At $\mu \sim$ few GeV, $lpha_{s} \sim$ 0.2 0.4

Another estimate of $T_{transition}$

T~200 MeV

• Density: Consider a pion gas.

$$n = 3 \int rac{d^3 p}{(2\pi)^3} \, rac{1}{e^{E_p/T} - 1} \propto T^3$$

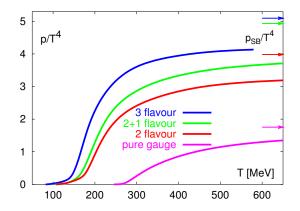

As *T* becomes larger, more and more pair creation results.Inter particle distance:

$$l_{\rm inter} = n^{1/3} \approx 1/T$$

At T= 200 MeV, $\mathit{I}_{\mathrm{inter}} pprox$ 1 fm pprox r_{π}

- Perturbative calculation possible much above $\mu = \Lambda_{QCD}$
- $\mu \sim T$ at high T
- If *T* is much above the binding energy of hadrons
 Deconfinement
- At high enough *T*, the system is a plasma of weakly interacting quarks and gluons
- All the above arguments are plausible but not a proof

Lattice QCD Evidence



• F. Karsch, hep-lat/0403016. The color averaged heavy quark free energy at temperatures $T/T_c = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5$ (from top to bottom) obtained in quenched QCD.

Jeon (McGill)

< 口 > < 同

Lattice QCD – QGP

- QCD is an asymptotically free theory High T => Free quarks and gluons
- Phase transition happens Hadrons should 'melt' at around $T = 170 \text{ MeV} = 2 \times 10^{12} \text{ K}$ [F.Karsch et al.] "Cross-over"

Expected properties

High number density

$$n \approx (24 + 16) \int \frac{d^3 p}{(2\pi)^3} e^{-p/T} \approx 4 T^3$$

= $4 \left(\frac{T}{200 \text{ MeV}} \right)^3 \text{ fm}^{-3}$

• High energy density

$$\varepsilon \approx (24+16) \int \frac{d^3p}{(2\pi)^3} p e^{-p/T} \approx 12 T^4$$
$$= 2.4 \left(\frac{T}{200 \text{ MeV}}\right)^4 \text{ GeV/fm}^3$$

イロト イポト イヨト イヨ

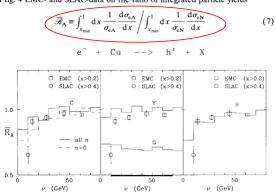
Simple Estimate

- 1 mole of hydrogen atom: 6.2×10^{23} atoms = 1 g (Avogadro's number)
- 1 hydrogen atom $m_{
 m p} pprox (1/6) imes 10^{-23}\,{
 m g}$
- $m_p = 940 \, {
 m MeV} pprox 1 \, {
 m GeV}$
- $E = mc^2$: 1 GeV $\approx (1/6) \times 10^{-23}$ g

$$\begin{array}{rcl} 2.4\,\text{GeV}/\text{fm}^3 &=& 0.4\times10^{-23}\,\text{g}/(10^{-13}\,\text{cm})^3\\ &=& 0.4\times10^{-23+39}\,\text{g/cm}^3\\ &=& 0.4\times10^{16}\,\text{g/cm}^3\\ &=& 4\times10^{12}\,\text{kg/cm}^3 \end{array}$$

• Typical human: $\sim 100 \, \text{kg}$

$$2.4\,GeV/fm^3~\sim~4\times10^{10}\,human/cm^3$$


How do you achieve high temperature?

- Temperature = energy (1 eV \approx 12,000K)
- More usefully, the energy density:


$$arepsilon = g \int rac{d^3
ho}{(2\pi)^3} \, extsf{E}_{
ho} \, extsf{e}^{- extsf{E}_{
ho}/ au} pprox rac{3g}{\pi^2} extsf{T}^4$$

- To get high temperature: Get high energy density --> Cram maximum possible energy into the smallest possible volume while randomizing the momenta --> Relativistic heavy ion collisions.
- What to expect: *dN*/*dη* and *dE*/*dη* grow something like (ln s)ⁿ with n ~ 1 ⇒ T should behave something like (ln s)ⁿ with n ~ 1

- High temperature —> Thermal photons
- High density \implies *Jet quenching*
- High pressure → Hydrodynamic flow
 - The size of the eliptic flow depends on the shear viscosity η .
 - If weakly coupled, $\eta/s \gg$ 1 : pprox Ideal gas
 - If stronlgy coupled, $\eta/s \ll 1$: \approx Perfect (Ideal) fluid.
- Neutrality —> Tight unlike-sign correlation
- Critical point —> Large momentum fluctuations

In fig. 4 EMC- and SLAC-data on the ratio of integrated particle yields

Miklos Gyulassy and Michael Plümer *Jet quenching in lepton nucleus scattering* in Nuclear Physics B Volume 346, 1 (1990).

Key Idea: Compare high p_T spectrum in sth-*N* and sth-*A* by plotting the ratio.

How jets are disappearing in hot/dense medium can tell us about the medium

A D M A A A M M

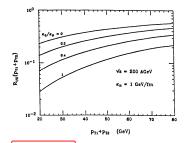
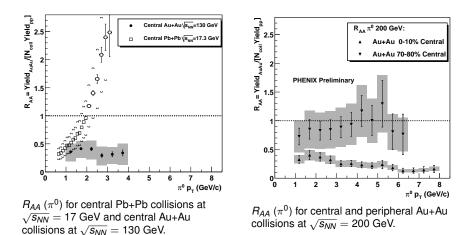


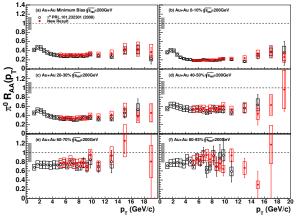
Fig. 7 Dijet reduction factor for central U + U collisions at $\sqrt{s} = 200$ GeV/n as a function of the dijet energy $E = P_{T1} + P_{T2}$, for different values of κ_Q/κ_H assuming $\kappa_H = 16$ GeV/fm.

transverse coordinate, ϕ the azimuthal angle of the jet and $\tau_f(r, \phi)$ the escape time. Assuming only Bjorken[31] scaling longitudinal expansion and a Bag model equation of state[31], one can find the time dependence of $dE(\tau)/dx$ and get the reduction rate of jet production at fixed P_T by averaging over the initial coordinates $(r, \phi)[22]$,


$$R_{AA}(E) = \frac{\sigma^{jet}(E)_{quenching}}{\sigma^{jet}(E)_{no-quenching}}.$$
(11)

In the plasma phase, the temperature decreases as $T(\tau)/T_c = (\tau_Q/\tau)^{1/3}$. According to Eq. 9, $dE/dx \approx \kappa_Q (\tau_Q' \tau)^{2/3}$, denoting the energy loss in the plasma phase by

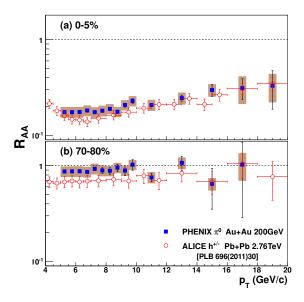
Xin-Nian Wang and Miklos Gyulassy, Jets in relativistic heavy ion collisions in BNL RHIC Workshop 1990:0079-102 (QCD199:R2:1990)


.

QM 2002 (PHENIX)

Presented by S. Mioduszewski at QM 2002

A B F A B F


PHENIX, arXiv:1208.2254

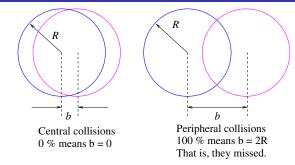
イロト イ理ト イヨト イヨト

 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{pp}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

In 2012

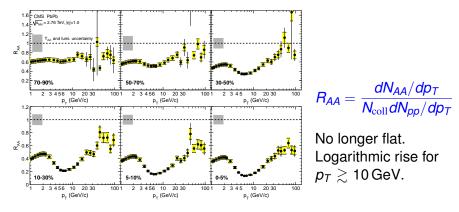
PHENIX, arXiv:1208.2254


 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{pp}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

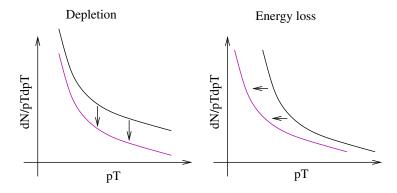
Jeon (McGill)

Jeju 2013 52 / 68


Centrality

For instance:

- 0 5% means top 5% of all collisions in terms of the number of particles produced (multiplicity).
- 70 80% means the collection of events whose multiplicity ranks between bottom 30% and bottom 20%.
- Centrality and impact parameter b not strictly 1 to 1, but very close.


Jeon (McGill)

CMS, 1208.6218v1

イロト イポト イヨト イヨ

Two ways to understand $R_{AA} < 1$

- The spectrum can shift down when particles actually disappear (depletion)
- The spectrum can shift to the left by energy loss *This is the more realistic scenario.*

Jeon (McGill)

- For high p_T , $dN_{\rm pp}/dp_T \approx 1/p_T^n$.
- Suppose, on average, a particle with *p_T* loses Δ*p_T* while traversing QGP.
- Then the number of particles with *p_T* in AA is the same as the number of particles with *p_T* + Δ*p_T* in pp.

$$R_{AA} = \frac{dN_{AA}/dp_T}{N_{\rm col}dN_{\rho\rho}/dp_T} \approx \frac{dN_{\rho\rho}/dp_T|_{\rho_T + \Delta p_T}}{dN_{\rho\rho}/dp_T|_{p_T}}$$

- What we want to learn: Behavior of Δp_T in the medium
- Shape of R_{AA} depends very much on the shape of dN_{pp}/dp_T

- E 🕨

• Suppose $dN_{pp}/dp_T = 1/p_T^n$ (realistic for high p_T)

$$R_{AA} \approx \left(rac{
ho_T}{
ho_T + \Delta
ho_T}
ight)^n = \left(rac{1}{1 + \Delta
ho_T/
ho_T}
ight)^n$$

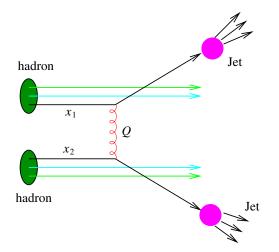
- Let $\Delta p_T \propto p_T^s$.
- R_{AA} constant if s = 1
- R_{AA} approaches 1 as $p_T \rightarrow \infty$ if s < 1.
- R_{AA} approaches 0 as $p_T \rightarrow \infty$ if s > 1.

• Let $\Delta p_T \propto p_T^s$.

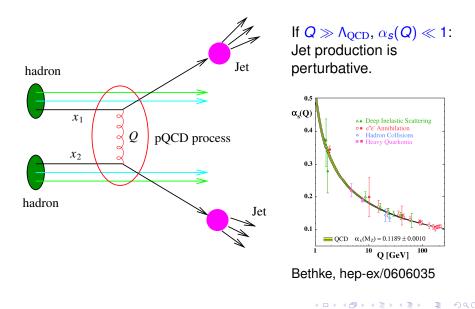
- R_{AA} constant if s = 1
- R_{AA} approaches 1 as $p_T \rightarrow \infty$ if s < 1.

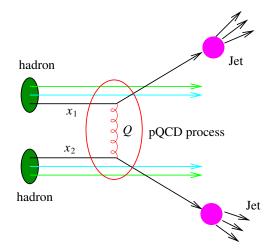
• R_{AA} approaches 0 as $p_T \rightarrow \infty$ if s > 1.

Data suggests that for up to about 5 GeV, $\Delta p_T \propto p_T^{1+a}$ and after that $\Delta p_T \propto p_T^{1-b}$

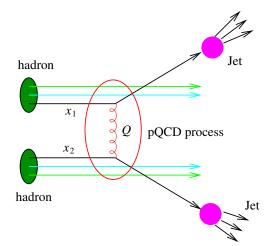

< ロ > < 同 > < 回 > < 回 >

Jet Quenching – Schematic Ideas

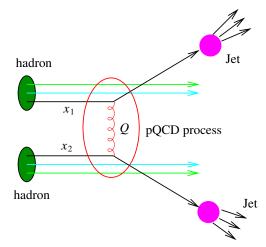

Jeon (McGill)


Jeju 2013 59 / 68

< 4 →

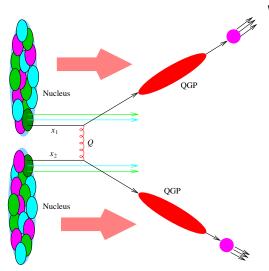

・ロト ・回ト ・ヨト

If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.


→ Calculation is possible.

If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.

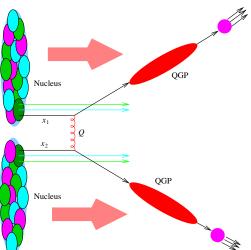
→ Calculation is possible.


→ We understand this process in hadron-hadron collisions.

Hadron-Hadron Jet production scheme:

$$\begin{aligned} \frac{d\sigma}{dt} &= \\ \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ &\times \frac{d\sigma_{ab \to cd}}{dt} D(z_c, Q) \end{aligned}$$

Heavy Ion Collisions



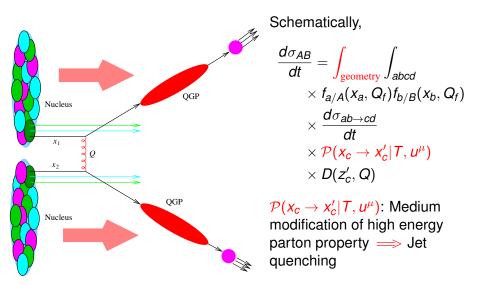
What we want to study:

 How does QGP modify jet property?

Jeon (McGill)

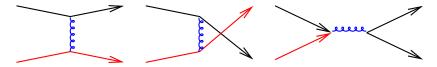
Heavy Ion Collisions

What we want to study:

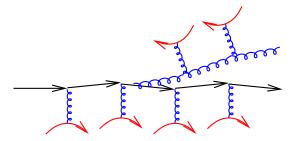

 How does QGP modify jet property?

Complications: How well do we know the *initial condition*?

- Nuclear initial condition?
- What happens to a jet between the production and the formation of (hydrodynamic) QGP?


< ∃ ►

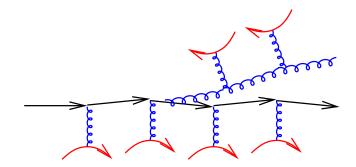
Heavy Ion Collisions



・ロト ・ 四ト ・ ヨト ・ ヨト

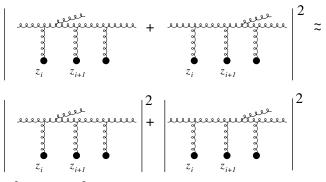
Relevant processes for E-loss

Elastic scatterings with thermal particles


Collinear radiation

- Hot and dense system Requires resummation: HTL & LPM
- Finite size system
- System is evolving

- 3 →

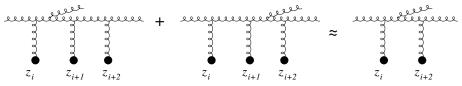

Radiational Energy Loss – Why coherence matters

Process to study

• Radiative (Inelastic) energy loss via collinear gluon emission

Incoherent emission

- $|\sum_n T_n|^2 \approx \sum |T_n|^2$
- Interference terms $T_n^* T_m$ with $n \neq m$ negligible.
- Single emission probabilist scales like the number of scatterers:


$$\mathcal{P}_{N_{sc}} \approx N_{sc} \mathcal{P}_{1}$$

• In a unit length, there are $N_{sc} = \frac{1}{l_{mfp}}$ number of scatterers. MFP = mean free path.

Jeon (McGill)

Coherent emission

If there is a destructive interference.

Single emission probability scales like

$$\mathcal{P}_{N_{\rm sc}} \approx rac{N_{\rm sc}}{N_{\rm coh}} \mathcal{P}_1$$

where $N_{\rm coh}$ is the number of scattering centers that destructively interfere.

- The medium's power to induce radiation is reduced.
- In the unit length, there are effectively,

$$N_{\rm eff. sc} = \frac{1}{I_{\rm coh}} = \frac{1}{I_{\rm mfp}} \frac{1}{N_{\rm coh}} = \frac{1}{I_{\rm coh}}$$
Hard Probes

68

Effective Emission rate

• Coherent Emission rate:

$$rac{d\mathcal{P}}{dt}pproxrac{c}{I_{\mathrm{coh}}}\mathcal{P}_{1}$$

Incoherent Emission rate:

$$rac{d\mathcal{P}}{dt} pprox rac{c}{I_{\mathrm{mfp}}} \mathcal{P}_{1}$$

• Here, \mathcal{P}_1 : Bethe-Heitler

$$\mathcal{P}_1 \approx rac{lpha_{\mathcal{S}} N_c}{\pi \omega}$$

for small ω

Jeon ((McGill)

- 3 →