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McGill is in Montréal, Québec, Canada

Mr. McGill going home after a hard day’s work.
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McGill is in Montréal, Québec, Canada

Rutherford carried out his Nobel (1908) winning work at McGill
(1898-1907).
His original equipments on display
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Before I begin...
Some thoughts I’d like to share
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Success in your Physics career

Disclaimer: These are my own thoughts. Everyone is different. Take
these with a grain of salt.

Passion for Physics!

Communication skill – Improve your English
Writing skill – Writing guide books help
A good one: BUGS in Writing: A Guide to Debugging Your Prose,
by Lyn Dupre
Presentation skill – Have a look at R. Geroch’s “Suggestions for
Giving Talks”, arXiv:gr-qc/9703019v1.
Debate skill – Practice thinking in English
Social communication skill – Read novels (paperbacks are better),
watch sitcoms, know the culture, slang, ...
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Writing/Presentation skill

Approach it as if you’re writing a story
Story

Introduction – Make the reader
interested in the rest of the
story

Expanding the story – Main
characters, main events,
conflicts, puzzles, ...

Resolution – Story escalates
to the ultimate resolution by a
big battle, saved by the
heroes/heroines.

Ending – Tie up loose ends.
Make the reader want to read
the sequel.

Article/Talk
Introduction – Make the reader
interested in the rest of the
paper/talk

Expanding the point – Main
physics points, main data,
conflicts, puzzles, ...

Resolution – What big physics
the new data/theory
illuminates/resolves. Saved by
the heroes/heroines.

Conclusion – Tie up loose
ends. Make the reader want to
read the sequel.
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On to Physics
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Relativistic Heavy Ion Collisions

Why do it?
To study QGP
Most extreme environment ever created: T ∼ 1 GeV.
This existed only at around 1 microsecond after the Big Bang

How do we understand it?
Theory: Many-body QCD
Experimental probes:

Soft
Hard
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Hard Probes are useful

Hard Probes ∼ Large momentum/energy phenomena

pQCD applies – We know how to do this

Produced before QGP is formed in the same way as in
hadron-hadron collisions

Difference between pp, pA and AA tells us about the medium.

Caveat: How well do we know the nuclear initial state?
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What do we want to learn?

Medium properties
What is it made of? Quarks? Gluons? Hadrons?
Thermodynamic properties – Temperature, Equation of state, etc.
Transport properties – Mean-free-path, transport coefficients, etc.

Tools
Jets
Hard Photons
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Outline

1 pQCD
2 Jet Quenching
3 Hard Photons
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What is a hard probe?

Early hard probe experiments
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What is a hard probe?

Early hard probe experiments

System

Detector

Object identification

Signal

Probe
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What is a hard probe?

Early hard probe experiments

Rutherford’s α scattering experiment

dσ
d cos θ

=
π

2
Z 2α2

EM

(
~c
Ekin

)2

× 1
(1− cos θ)2

Small angle scattering dominates
dσ/d cos θ ∝ 1/θ4

But backscattering prob. is finite,
favoring Rutherford’s model over
Thompson’s (which causes no
backscattering)
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Fast-forward to the present

ATLAS: Intact dijets in Pb+Pb ATLAS: One jet is fully quenched in
Pb+Pb

Simplest conclusion to draw: The medium is opaque.

We want to know much more than that!
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Hard Probe Requirements

Must be known & calculable using pQCD.

Must be created before QGP forms

Both requirements satisfied if the energy scale is much large
compared to ΛQCD ≈ 200 MeV and the length (time) scale is much
shorter than ∼ 1 fm.
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Hard Probes

Probes
Propagation of hard partons or “Jets”

Quarkonium suppression

High pT electromagnetic probes (real and virtual photons)
Goal

To characterize QGP

To characterize initial state (nPDF, CGC?)
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(Very) Schematic view of heavy ion collisions

Static color charges Classical gluon field
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(Very) Schematic view of heavy ion collisions

Jets are produced

High energy photons

Nuclei are breaking up

Gluon fields are grabbing each other

Hard Scatterings
occur at this stage

Jeon (McGill) Hard Probes Jeju 2013 16 / 68



(Very) Schematic view of heavy ion collisions

gluons and classical gluon field.

Nucleus remnant

Jets propagating

Photons are produced

Entropy is produced.
Pre−equilibrium mix of streaming quarks,

Jeon (McGill) Hard Probes Jeju 2013 16 / 68



(Very) Schematic view of heavy ion collisions

Quenched jets come out

A jet can convert to photon

High pressure flows develope

Thermal photons
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Review of some basic concepts

Spatial resolution: ∆x∆p ≥ 1/2

Shorter the wavelength (larger the momentum) sees spatial
details up to ∆x ≈ λ.
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Review of some basic concepts

Energy-Time uncertainty: |∆E |∆t ≥ 1/2

∆E = p0 −
√

p2 + m2.

If ∆E = 0, then pµpµ = m2: On-shell

If ∆E 6= 0, the pµpµ 6= m2: Off-shell

Interpretation
An off-shell state can exist only for ∆t ∼ 1/|∆E |.

2

p  = m

k  = 0

p’  = m

k’  = 0

q  = m

2 2

2

2 2

2 2

This interaction lasts ∆t ∼ 1/|(|p|+ |k| −
√

(p + k)2)|
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Perturbative QCD
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Perturbative QCD (pQCD)

q
g g

g g

q
g

g

− Interaction of quarks and gluons
QCD 

g

g

Nf flavors of quarks

N2
c − 1 gluons
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Perturbative QCD (pQCD)

Of course, things can get complicated.
Tree diagrams of n↔ m processes

Corrections to vertices

Corrections to propagators
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Perturbative QCD (pQCD)

S. Bethke, arXiv:1210.0325.

Perturbative expansion
possible because of
asymptotic freedom

Q2 ∂αS

∂Q2 = −β0α
2
S − β1α

3
S + · · ·

αS(Q2) ≈
1

((33− 2nf )/12π) ln(Q2/Λ2
QCD)

pQCD reliable for Q >∼ 1 GeV
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Intuitive understanding of asymptotic freedom

b

q q

+e

−e

rg

rb

bg

QCD

QED

gb

gr

QED: Surrounded by virtual
eē cloud

Virtual −e cloud drawn closer
to q > 0 ==> Screening

Larger Q ==> smaller
distance ==> Sees less of the
cloud ==> Closer to bare
charge

Possible because the original
q never changes and photons
do not carry charges
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Intuitive understanding of asymptotic freedom

b

q q

+e

−e

rg

rb

bg

QCD

QED

gb

gr

QCD: Can resolve more soft
virtual gluons at larger Q

The color of the real particle
can change whenever a gluon
is emitted.

Larger Q ==> More frequent
changes ==> Less average
color charge ==> Asymptotic
freedom
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Difficulties with QCD

As Q → ΛQCD,

αS(Q2) ≈ 1
((33− 2nf )/12π) ln(Q2/Λ2

QCD)
→∞

Hadrons are O(ΛQCD) objects.

Anything that has to do with hadron properties such as color
confinement and hadronization is non-perturbative.

In the IR limit, perturbation theory does not work ==> Factorize
what can be calculated with pQCD (UV) and what cannot be
calculated (IR)
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Factorization Theorem

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

Hadron-Hadron Jet production
scheme:

σ =∫
abcd

fa/A(xa,Qf )fb/B(xb,Qf )

× σab→cdDC/c(zC ,Q)
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Factorization Theorem

How realistic pQCD calculations are done

σhh′→C+X =

∫
abcd

dx1dx2fa/h(x1,Qf )fb/h′(x2,Qf )σab→cd (QR)DC/c(zC ,Q′f )

fa/h(x1,Qf ): Parton distribution function. Probability to have a
parton type a with the momentum fraction x1 in a hadron h.
Depends on the factorization scale Qf .

DC/c(zC ,Q′f ): Fragmentation function. Probability to create a
hadron type C our of parton type c carrying the momentum
fraction zc .

σab→cd (QR): Parton-parton scattering cross-section.
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Factorization Theorem

How realistic pQCD calculations are done

σhh′→C+X =

∫
abcd

dx1dx2fa/h(x1,Qf )fb/h′(x2,Qf )σab→cd (QR)DC/c(zC ,Q′f )

pQCD controls the evolutions of fa/h(x1,Qf ) and DC/c(zC ,Q′f ). But
pQCD cannot determine the initial data because this is dominated
by IR processes.

pQCD can calculate σab→cd (QR) when the renormalization scale
QR can be set high (that is, when

√
s is large)
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How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction

Coulomb potential in the rest frame of the
charge

ϕ = Q/|r|

In the moving frame

Aµ(x ′) = Λµ
νAν(x(x ′))

The coordinate in the moving frame
x ′ = (t , x , y , z). This corresponds to the
rest frame position
x = (tγ − zγv , x , y , zγ − tγv).
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How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction

Coulomb potential in the rest frame of the
charge

ϕ = Q/|r|

In the moving frame

Aµ =
Q(γ,0,0, γv)√

(z − vt)2γ2 + ∆x2
⊥

Pure gauge in the v → 1 limit

Aµ ≈ Q(1,0,0,1)

|z − vt |
= Q∂µ ln |z − vt |
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How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction
Fµν ≈ 0 unless z ≈ vt

In the rest frame: Coulomb field is made
up of space-like virtual photons
qµqµ = −q2 with q0 = 0.

In the Lab frame:
q′µ = (qz sinh η,q⊥,qz cosh η)

For large η,
|∆E | = |q− − |q|| ∼ e−ηq2/qz
==> ∆t ∼ 1/|∆E | ∼ eηqz/q2 ==> virtual
photons look almost like real photons.
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How to think about the initial state factorization – QED
analogy

Q’

Q

v ~ c

Weizsäcker-Williams field – Highly
contracted in the z direction
Fµν ≈ 0 unless z ≈ vt

To a first approximation, the approaching
particles do not know about each other
until they are on top of each other.

Initial photon momentum distribution
factorizes: F (x1, x2) = f (x1)f (x2)
but this is not exact.

In QCD, color neutrality of hadrons help.
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

Q0: Coarse grained. You see one almost on-shell parton.
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

Q0 < Q1: Start to resolve another parton
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

Q0 < Q1 < Q2: And another
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

Q0 < Q1 < Q2 < Q3: And another
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

You get the idea
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DGLAP Equation

f (x ,Qf ): Probability density of partons with the virtuality less than
Qf .

Q2 ∂

∂Q2

(
qS

g

)
=
αS(Q2)

2π

(
Pqq 2nf Pqg
Pgq Pgg

)
⊗
(

qS

g

)
where Pij : Splitting function ∼ Probability to end up with ij
in the final state.
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Splitting can cause IR divergence

p l

k

p is on-shell: p2 = 0

Diverges when either k or l is on-shell

This happens either k is very soft so
that

l2 = (p − k)2 ≈ p2

or p and k are almost collinear

l2 = (p − k)2 = p2 + k2 − 2pk
≈ 0
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Splitting can cause IR divergence

g → qq̄ and g → qq̄g

Only the sum is IR finite
because soft and collinear
divergences

Splitting functions know about
this
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Splitting can cause IR divergence

Observables must be IR safe.

3rd diagram must be treated
as 2-jet when the radiation is
soft or collinear ==> IR-safe
Jet definitions
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Factorization Theorem

Splitting function similarly runs

3 different scales: Qf for the pdf, QR for σ(QR) and Q′f for the
fragmentation function

In principle, physical observables should not depend on these
scales. However, factorization theorem is only approximate.

Lots of freedom to choose the scales. Usually something like

Qf = QR = Q′f = #pT

works OK where pT is the momentum of the final state particle.
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pQCD & Factorization at work
HERA F2
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pQCD & Factorization at work

CTEQ 06 Proton PDF’s

Larger Q ==> More soft partons
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pQCD & Factorization at work

Gluon distributions for Q2 = 10 GeV2 and Q2 = 100 GeV2.
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Day 2

Jet Quenching
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What do we want to learn?

Medium properties
What is it made of? QGP or HG?
Thermodynamic properties – Temperature, Equation of state, etc.
Transport properties – Mean-free-path, transport coefficients, etc.

Tools – Change in jet properties
Jet Quenching
Jet Broadening

Jeon (McGill) Hard Probes Jeju 2013 36 / 68



Away side jet disappears! – Proof of principle

Near−side
jet

Away−side
jet

Hard
scattering

0

0.1

0.2 d+Au FTPC-Au 0-20%

d+Au min. bias

0

0.1

0.2 p+p min. bias

Au+Au central

1
/N

tr
ig

g
e

r 
d
N

/d
(∆

φ
)

∆φ (radians)
0 π/2 π

(a)

(b)

 h++h-

STAR PRL91, 072304 (2003)

Now we need more informative observables to study detailed
properties of the medium.
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Away side jet disappears! – Proof of principle

ATLAS: Intact dijets in Pb+Pb ATLAS: One jet is fully quenched in
Pb+Pb
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QCD Phase Diagram

Picture credit: GSI (www.gsi.de)
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The Official Web Site of the Nobel Foundation Copyright © Nobel Web AB 2007

"for the discovery of asymptotic freedom in the theory of the 
strong interaction"

The Nobel Prize in Physics 2004

David J. Gross H. David Politzer Frank Wilczek

 1/3 of the prize  1/3 of the prize  1/3 of the prize

USA USA USA

University of California, Kavli 
Institute for Theoretical 

Physics 

Santa Barbara, CA, USA

California Institute of 
Technology (Caltech) 

Pasadena, CA, USA

Massachusetts Institute of 
Technology (MIT) 

Cambridge, MA, USA

b. 1941 b. 1949 b. 1951

Titles, data and places given above refer to the time of the award.
Photos: Copyright © The Nobel Foundation

QCD is asymptotically free.

Bethke, hep-ex/0606035
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At high T

Running coupling

αs(µ2) =
12π

(33− 2Nf ) ln(µ2/Λ2
QCD)

When µ ∼ ΛQCD ∼ 200 MeV, the above expression blows
up: Not physical. Indicates breakdown of perturbation
theory.
Perturbative QCD is a theory of quarks and gluons not
hadrons.
At high T , µ ∼ T .
Possible phase transition around T ∼ ΛQCD?
If µ ∼ T →∞, αs → 0: Weakly coupled
At µ ∼ few GeV, αs ∼ 0.2− 0.4
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Another estimate of Ttransition

T ~200 MeVLow T

~1fm

. . .

Density: Consider a pion gas.

n = 3
∫

d3p
(2π)3

1
eEp/T − 1

∝ T 3

As T becomes larger, more and more pair creation results.
Inter particle distance:

linter = n1/3 ≈ 1/T

At T = 200 MeV, linter ≈ 1 fm ≈ rπ
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Story so far

Perturbative calculation possible much above µ = ΛQCD

µ ∼ T at high T

If T is much above the binding energy of hadrons
==> Deconfinement

At high enough T , the system is a plasma of weakly interacting
quarks and gluons

All the above arguments are plausible but not a proof
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Lattice QCD Evidence

-4

-3

-2

-1

0

1
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3

4

0 0.5 1 1.5 2 2.5 3

rσ1/2

(Fqq-Tln9)/Tc-

F. Karsch, hep-lat/0403016. The color averaged heavy quark free
energy at temperatures T/Tc = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5
(from top to bottom) obtained in quenched QCD.
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Lattice QCD – QGP

  0

  1

  2

  3

  4

  5

100 200 300 400 500 600

T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

QCD is an asymptotically free theory - High T ==> Free quarks
and gluons

Phase transition happens – Hadrons should ‘melt’ at around
T = 170 MeV = 2× 1012 K [F.Karsch et al.] “Cross-over”
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Expected properties

High number density

n ≈ (24 + 16)

∫
d3p

(2π)3 e−p/T ≈ 4 T 3

= 4
(

T
200 MeV

)3

fm−3

High energy density

ε ≈ (24 + 16)

∫
d3p

(2π)3 p e−p/T ≈ 12 T 4

= 2.4
(

T
200 MeV

)4

GeV/fm3
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Simple Estimate

1 mole of hydrogen atom: 6.2× 1023 atoms = 1 g (Avogadro’s
number)

1 hydrogen atom mp ≈ (1/6)× 10−23 g

mp = 940 MeV ≈ 1 GeV

E = mc2: 1 GeV ≈ (1/6)× 10−23 g

2.4 GeV/fm3 = 0.4× 10−23 g/(10−13 cm)3

= 0.4× 10−23+39 g/cm3

= 0.4× 1016 g/cm3

= 4× 1012 kg/cm3

Typical human: ∼ 100 kg

2.4 GeV/fm3 ∼ 4× 1010 human/cm3
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How do you achieve high temperature?

Temperature = energy (1 eV ≈ 12,000K)

More usefully, the energy density:

ε = g
∫

d3p
(2π)3 Ep e−Ep/T ≈ 3g

π2 T 4

To get high temperature: Get high energy density ==> Cram
maximum possible energy into the smallest possible volume while
randomizing the momenta ==> Relativistic heavy ion collisions.

What to expect: dN/dη and dE/dη grow something like (ln s)n

with n ∼ 1 ==> T should behave something like (ln s)n with n ∼ 1
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Observable Consequence

High temperature ==> Thermal photons

High density ==> Jet quenching

High pressure ==> Hydrodynamic flow
The size of the eliptic flow depends on the shear viscosity η.
If weakly coupled, η/s � 1 : ≈ Ideal gas
If stronlgy coupled, η/s � 1 : ≈ Perfect (Ideal) fluid.

Neutrality ==> Tight unlike-sign correlation

Critical point ==> Large momentum fluctuations
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Back in 1990...

Miklos Gyulassy and
Michael Plümer
Jet quenching in lepton
nucleus scattering
in Nuclear Physics B
Volume 346, 1 (1990).

Key Idea: Compare high
pT spectrum in sth-N
and sth-A by plotting the
ratio.

How jets are disappearing
in hot/dense medium can
tell us about the medium
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Back in 1990...

Xin-Nian Wang and Miklos
Gyulassy,
Jets in relativistic heavy
ion collisions
in BNL RHIC Workshop
1990:0079-102
(QCD199:R2:1990)
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QM 2002 (PHENIX)
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In 2012
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Slight rising is becoming
evident at high pT .
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Centrality

b

Central collisions
0 % means b = 0

b

Peripheral collisions
100 % means b = 2R
That is, they missed.

R

R

For instance:
0 − 5 % means top 5 % of all collisions in terms of the number of
particles produced (multiplicity).

70 − 80 % means the collection of events whose multiplicity ranks
between bottom 30 % and bottom 20 %.

Centrality and impact parameter b not strictly 1 to 1, but very
close.
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In 2012
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RAA =
dNAA/dpT

NcolldNpp/dpT

No longer flat.
Logarithmic rise for
pT >∼ 10 GeV.
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Two ways to understand RAA < 1

pT

Depletion
d
N

/p
T

d
p
T

Energy loss

d
N

/p
T

d
p
T

pT

The spectrum can shift down when particles actually disappear
(depletion)

The spectrum can shift to the left by energy loss – This is the
more realistic scenario.
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Very Rough Understanding

For high pT , dNpp/dpT ≈ 1/pn
T .

Suppose, on average, a particle with pT loses ∆pT while
traversing QGP.

Then the number of particles with pT in AA is the same as the
number of particles with pT + ∆pT in pp.

RAA =
dNAA/dpT

NcoldNpp/dpT
≈

dNpp/dpT |pT +∆pT

dNpp/dpT |pT

What we want to learn: Behavior of ∆pT in the medium

Shape of RAA depends very much on the shape of dNpp/dpT
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Very Rough Understanding

Suppose dNpp/dpT = 1/pn
T (realistic for high pT )

RAA ≈
(

pT

pT + ∆pT

)n

=

(
1

1 + ∆pT/pT

)n

Let ∆pT ∝ ps
T .

RAA constant if s = 1

RAA approaches 1 as pT →∞ if s < 1.

RAA approaches 0 as pT →∞ if s > 1.
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In 2012
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Let ∆pT ∝ ps
T .

RAA constant if
s = 1

RAA approaches 1
as pT →∞ if s < 1.

RAA approaches 0
as pT →∞ if s > 1.

Data suggests that for
up to about 5 GeV,
∆pT ∝ p1+a

T and after
that ∆pT ∝ p1−b

T
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Jet Quenching

– Schematic Ideas
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Hadronic Jet production

x1

x2

Q

hadron

hadron
Jet

Jet

Jeon (McGill) Hard Probes Jeju 2013 60 / 68



Hadronic Jet production

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

If Q � ΛQCD, αs(Q)� 1:
Jet production is
perturbative.

Bethke, hep-ex/0606035
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Hadronic Jet production

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

If Q � ΛQCD, αs(Q)� 1:
Jet production is
perturbative.

å Calculation is possible.
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Hadronic Jet production

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

If Q � ΛQCD, αs(Q)� 1:
Jet production is
perturbative.

å Calculation is possible.

å We understand this
process in hadron-hadron
collisions.
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Hadronic Jet production

x1

x2

Q

hadron

hadron
Jet

Jet

pQCD process

Hadron-Hadron Jet
production scheme:

dσ
dt

=∫
abcd

fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
D(zc ,Q)
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Heavy Ion Collisions

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

What we want to study:
How does QGP modify jet
property?
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Heavy Ion Collisions

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

What we want to study:
How does QGP modify jet
property?

Complications:
How well do we know the initial
condition?

Nuclear initial condition?
What happens to a jet
between the production
and the formation of
(hydrodynamic) QGP?
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Heavy Ion Collisions

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

Schematically,

dσAB

dt
=

∫
geometry

∫
abcd

× fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
× P(xc → x ′c |T ,uµ)

× D(z ′c ,Q)

P(xc → x ′c |T ,uµ): Medium
modification of high energy
parton property ==> Jet
quenching
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Relevant processes for E-loss

Collinear radiation

Elastic scatterings with thermal particles

Jeon (McGill) Hard Probes Jeju 2013 62 / 68



Why it is not-trivial

Hot and dense system – Requires resummation: HTL & LPM

Finite size system

System is evolving
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Radiational Energy Loss
– Why coherence matters
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Process to study

Radiative (Inelastic) energy loss via collinear gluon emission
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Incoherent emission
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n Tn|2 ≈
∑
|Tn|2

Interference terms T ∗n Tm with n 6= m negligible.
Single emission probabilist scales like the number of scatterers:

PNsc ≈ NscP1

In a unit length, there are Nsc = 1
lmfp

number of scatterers.
MFP = mean free path.
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Coherent emission

If there is a destructive interference,
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z

 ~

Single emission probability scales like

PNsc ≈
Nsc

Ncoh
P1

where Ncoh is the number of scattering centers that destructively
interfere.
The medium’s power to induce radiation is reduced.
In the unit length, there are effectively,

Neff. sc =
1

lcoh
=

1
lmfp

1
Ncoh

=
1

lcoh
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Effective Emission rate

Coherent Emission rate:

dP
dt
≈ c

lcoh
P1

Incoherent Emission rate:

dP
dt
≈ c

lmfp
P1

Here, P1: Bethe-Heitler

P1 ≈
αSNc

πω

for small ω

Jeon (McGill) Hard Probes Jeju 2013 68 / 68


