Toward Geant4 version 10

Makoto Asai (SLAC PPA/SCA) o
For the Geant4 Collaboration

Geant4 Technical Forum

March 26", 2013

b l ‘ h NATI O N A L) U.S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Office of Science

Preamble o1 an

o e AN\

* Therelease in 2013 will be a major release.

— Geant4 version 10
e The highlight is its multi-threading capability.

— Some interfaces need to be changed due to multi-threading
e It offers two build options.

— Multi-threaded mode (including single thread)

— Sequential mode

* In case a user depends on thread-unsafe external libraries, he may install
Geant4 in sequential mode.

e This is the first major release since 2007.

— This is a rare opportunity for us to clean up obsolete code and make interface
improvements.

— GNUmake will be dropped.

Multi-threading of Geant4 version 10 o1 Az

» Geant4 version 10 will offer so-called event-level parallelism.
— Each thread is tasked for an event or a bunch of events.
» Every data that are updated at event-level frequency or shorter have to be thread
local.
— To avoid the race problem.
« Status of current prototype (G4MT-9.5.p01)
— Being tested on an Intel® Xeon Phi coprocessor (MIC)
— Initial tests show good scalability up to hundred of concurrent threads

60F

dnpeadg

50 -
61 cores _
Prototype card sk

30

Ongoing activities:
Testing on new Intel :
Xeon Phi 10f

Preliminary studies on TBB

Intel Threading Building Block is a library for task-based

multi-threading code. Some LHC experiments show their interest

in the use of TBB in their frameworks.

We have verified that the G4MT prototype can be used in a TBB-based application

where TBB-tasks are responsible for simulating events.

— We didn’t need to modify any concrete G4AMT class to adapt to TBB.
A simple test code has been prepared that uses TBB and G4MT.
We keep investigating where/how to reduce memory use.

We will provide an example or two at the beta release of version 10 to demonstrate

the way of integrating TBB and G4MT.

— We will keep communicating with our users to polish our top-level interfaces.

Timeline toward version 10 o1 am

Fhm AN
Geant4 9.6 released on Nov.30
— Final release of version 9 series
Dec 2012 / Jan 2013
— Conversion of v9.6 to GAMT and move G4MT v9.6 to main development trunk
» All development toward version 10 should be made to this development trunk.
« We maintain native v9.6 in SVN brunch for potential patch release.
Feb-May 2013
— Migration of examples and tests
— Massive tests for both computing performance and physics performance
June 28, 2013
— Beta release : all the major changes related to multi-threading should be included
Jul-Nov 2013
— If necessary, more than one beta-releases may be made.
— Massive tests for both computing performance and physics performance
— Migration of documents
December 61", 2013
— Public major release of Geant4 version 10.0

Interface changes in version 10 — before the beta release o1 oAl

* Obsolete classes / methods
— All classes / methods to be removed have warning messages in v9.6.

“This class becomes obsolete and will be removed at the next release.
Alternatively, you should use xxxxxx.”

* Changes caused by / related to multi-threading
— Finalizing major changes before migration of examples / tests begins.
— We’re doing our best to minimize the migration cost of user’s code.
— Reference tags should be made available to testers.

* Changes independent to multi-threading

— Given it’s a major release, we may have some other interface changes. Some come
with the beta release, some come after. We make sure they run in multi-threading
mode.

Note: In addition to the massive tests in multi-threaded mode, Beta release should also
have reasonable number of already-migrated examples to demonstrate the ideas of multi-
threading.

Interface changes in version 10 — after the beta release o1 oAl

» After the beta release (or even after the first reference tags), we invite feedbacks from
our customers.

— Interfaces visible to users would be iterated.

— Hoping that iteration could be made by adding interfaces rather than changing
them, if possible.

— If necessary, more than one beta-releases may be made.

* All examples we release with version 10 will migrate to all interface changes including
multi-threading.

 Documents also will be updated accordingly.

e Staging???

— As usual, new features / classes may be added at any minor release as long as they
won’t cause user’s migration. Thus any functionalities, which we currently have but
we cannot catch up necessary interface changes or assuring thread safety, may be
staged as long as we release base interfaces with version 10.

— Some GUI/Vis features may be supported only for sequential mode at version 10.

Migration required for user’s multi-threaded code c1oan

* Please note that this slide shows preliminary current design p
* main() re//./'n /-n
— G4MTRunManager instead of G4RunManager dr V!

— New mandatory user initialization class G4VUserWorkerlnitialization, which
instantiates all the user action class objects for each thread

— Define number of threads you want to use
* G4VUserDetectorConstruction
— Split Construct() method to
* Construct() : materials and geometry (common for all threads)
* ConstructSDAndField() : sensitive detectors and field (thread-local)

* |f you opt to stick on sequential mode, you do not need to change anything in you
application code for multi-threading.

— Some migration may still be necessary for obsolete classes.

Basic user’s code -

main()

{ G4AMTRunManager* rm = new G4MTRunManager(); ,Dre/.
rm->SetUserlnitialization(new UserDetectorConstruction); //)7/',7
rm->SetUserlnitialization(new PhysicsList); af’y /
rm->SetUserlnitialization(new UserWorkerlnitialization);
rm->SetNumberOfThreads(/*number of threads*/);
rm->BeamOn(/*total number of events*/);

}
void UserWorkerlnitialization::WokerStart()

{ SetUserAction(new UserPrimaryGeneratorAction);
SetUserAction(new UserSteppingAction);

}

void UserDetectorConstruction::ConstructSDAndField()
{ SetSensitiveDetector(/*name of logical volume*/,
new MySensitiveDetector(/*detector name*/));

}

File I/O in user’s code is a challenge

N

» Every file 1/O for local thread is a challenge
— Input : primary events
— Output : event-by-event hits, trajectories
« G4MTRunManager collects run objects from worker threads and “reduces”.
— Scores
* Footnote to educate ourselves ©

“A reduction combines all the elements in a collection into one using an
associative two-input, one-output operator.”

http://www.drdobbs.com/architecture-and-design/
parallelpattern-7-reduce/222000718

* Histograms
* Tracking action, stepping action

— If you are accumulating quantities in your tracking action or stepping action in your
current application, you should note that these action classes will be thread-local.

chQLDQD_p_thSIQS_d_eALelme_QDI_thhlIghtS o1 Ac

Collaboration-wide top priority are
— Adaptation/improvement of relevant classes for multi-threading
— Update examples/tests/documents for multi-threading
— Validate physics for multi-threading
 Geometry
— Complete implementation of unified solid library
« Tracking
— Handling stopped particle to be accelerated by electric field
* Process General and related categories
— Enhancing event biasing options

» Forced interaction, forced free-pass, final-state biasing, point-like forced
interaction, leading-particle biasing, etc.

* Visualization
— New high-resolution transparent visualization tool
— New mobile visualization drivers

Toward Geant4 version 10 — Makoto Asai

New high-resolution transparent visualization

Ongoing Collaboration-wide developments e An

* Performance improvements
— Design iterations for some kernel classes

e Cache-hit-rate improvement, reduction of virtual abstract layers, avoiding too
deep recursive calls, etc.

— Review implementations of physics and transportation

* Many of these code were implemented by the correctness in physics rather
than in programming in mind.

— We must not loose physics performance, though. Massive verifications
are required.

— Changes must be transparent to user’s code (at least for average users).
* Longer term
— New trends
* Hardware : GPGPU, Intel new generation chips, etc.
* Programming language : CUDA, OpenCL, OpenACC, DSL, etc.

— The Geant4 Collaboration acknowledges several pilot / prototyping projects
worldwide which pursue major architectural revisions of Geant4.

— We eager to make Geant4 faster.
* Without sacrificing functionality, physics performance, flexibility.
* We also want to be free from specific hardware / programming paradigm.

