

LHCb status report LHCC open session

T. Blake on behalf of the LHCb collaboration

March 2013

- $1. \ \mbox{Data taking, data processing and computing.}$
- 2. Tour of recent LHCb results.
- 3. Proton-ion data taking.
- 4. The LHCb upgrade.

∃ >

The LHCb detector

イロン 不同と 不同と 不同と

Э

The LHCb detector

Particle ID: $\varepsilon(K \to K) \sim 95\%$ for $\varepsilon(\pi \to K) \sim 5\%$, $\varepsilon(\mu \to \mu) \sim 97\%$ for $\varepsilon(\pi \to \mu) \sim 1\%$.

イロン イ部ン イヨン イヨン 三日

- CALO: Perform regular gain calibrations to account for aging of the detector.
- OT: Small decrease in gain but no strong evidence of aging of the OT straw tubes.
- VELO: Depletion voltages are evolving in good agreement with expectations (replacement detector prepared).

- LHCb collected an additional 2.1 fb⁻¹ of integrated luminosity at $\sqrt{s} = 8 \text{ TeV}$ in 2012.
- Average data taking efficiency \sim 95%.
- Further, gain statistics for many analyses due to the increased bb and cc cross-sections (~ 8/7) at 8 TeV.

<ロ> <同> <同> <同> < 同> < 同>

- Reminder:
 - $\sigma_{b\overline{b}} = 75 \pm 14 \mu b$ at $\sqrt{s} = 7 \text{ TeV}$ [LHCb-PAPER-2010-002]
 - $\sigma_{c\bar{c}} = 1419 \pm 134 \mu b$ at $\sqrt{s} = 7 \text{ TeV}$ [LHCb-PAPER-2012-041]

in the LHCb acceptance.

Data re-processing and simulation

- Re-processing of 2011 and 2012 data (Reco 14) with latest alignment and calibration is now complete \rightarrow consistent 3 fb⁻¹ dataset.
 - Reco 14 will be used for all new analyses during LS1.

- The LHCb HLT farm has also been fully commissioned for offline use.
 - Already deployed during February (in parallel to proton-ion data taking) for MC simulation \rightarrow 55% of simulation CPU came from the HLT farm.

イロト イヨト イヨト イヨト

Recent LHCb results

æ

- < ≣ →

⊡ ▶ < ≣ ▶

In total, LHCb has now submitted 100 papers for publication. Another 23 will be submitted shortly. We have also prepared 105 conference reports.

- Since the last LHCC open presentation (December 2012) we have submitted papers on:
- "Observation of the decay $B_c^+ \rightarrow \psi(2S)\pi^+$ " [CERN-PH-EP-2013-028]
- "Measurements of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay amplitudes and the Λ_b^0 polarisation in *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$ " [CERN-PH-EP-2013-020]
- "Observation of the $B_s^0 \rightarrow \psi(2S)\eta$ and $B_{(s)}^0 \rightarrow \psi(2S)\pi^+\pi^-$ decays" [CERN-PH-EP-2013-024]
- "Determination of the X(3872) meson quantum numbers" [CERN-PH-EP-2013-017]
- "Prompt charm production in *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$ " [CERN-PH-EP-2013-009]
- "Amplitude analysis and the branching fraction measurement of $\overline{B}_s^0 \rightarrow J/\psi \, K^+ K^-$ " [CERN-PH-EP-2013-008]
- "Search for the decay $B_s^0
 ightarrow D^{*\pm}\pi^{\pm}$ " [LHCb-PAPER-2012-056]

★ E ▶ E

Submitted papers (since the last LHCC open session)

- "Measurement of the Λ_b^0 , Ξ_b^- and Ω_b^- baryon masses" [CERN-PH-EP-2013-013]
- "Exclusive J/ ψ and $\psi(2S)$ production in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ " [CERN-PH-EP-2013-005]
- "Analysis of the resonant components in $\overline{B}{}^0 \rightarrow J/\psi \pi^+ \pi^-$ " [CERN-PH-EP-2013-004]
- "Measurement of the fragmentation fraction ratio f_s/f_d and its dependence on *B* meson kinematics" [CERN-PH-EP-2013-006]
- "Measurement of CP observables in $B^0 \rightarrow DK^{*0}$ with $D \rightarrow K^+K^-$ " [CERN-PH-EP-2012-362]
- "Measurement of the cross-section for $Z^0 \rightarrow e^+e^-$ production in *pp* collisions at $\sqrt{s} = 7 \text{ TeV}$ " [CERN-PH-EP-2012-363]
- "Measurement of the forward energy flow in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ " [CERN-PH-EP-2012-346]
- "Measurement of J/ ψ production in pp collisions at $\sqrt{s} = 2.76 \,\mathrm{TeV}$ " [CERN-PH-EP-2012-349]
- "Search for direct CP violation in $D^0 \rightarrow h^+ h^-$ modes using semileptonic B decays" [LHCb-PAPER-2013-003]
- "Search for the rare decays $B^0_{(s)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ decays" [LHCb-PAPER-2012-049]
- "First observation of $\overline{B}{}^0_s \rightarrow D^+D^-$, $D^+_s D^-_s$ and $D^0 \overline{D}{}^0$ decays" [LHCb-PAPER-2012-050]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

First observation of the decay $B_c^+ \rightarrow D_s^{(*)+} J/\psi$

[LHCb-PAPER-2013-010] using the full 3 fb⁻¹ dataset
Allows for a precise determination of the B⁺_c mass:

$$m_{B_c^+} = 6276.28 \pm 1.44 \pm 0.36 \,\mathrm{MeV}/c^2$$

Determining the B_c^+ mass

• The new result is more precise than the old world average, $m_{B_c^+}=6275.41\pm1.90$, and is statistically dominated.

B_s^0 mixing and mixing induced CP violation

[LHCb-PAPER-2013-006] [LHCb-PAPER-2013-002] [LHCb-PAPER-2013-007]

- Mass eigenstates \neq flavour eigenstates.
- ightarrow Oscillation frequency $\propto \Delta m_s = m_H m_L$.

• Ignoring decay time acceptance and detector resolution, the decay time distribution of tagged candidates to a flavour specific final state is:

$$P(t) \propto \left[e^{-\Gamma t} \left(\cosh \left(\frac{\Delta \Gamma_s}{2} t \right) \pm \mathcal{D} \cos(\Delta m_s t) \right)
ight]$$

where \mathcal{D} is the flavour tagging dilution.

B_{ϵ}^{0} - $\overline{B}_{\epsilon}^{0}$ oscillation frequency

- Mixing analysis performed using $1 \, \text{fb}^{-1}$ of integrated luminosity using flavour specific $B^0_{\epsilon} \to D^-_{\epsilon} \pi^+$ and $\overline{B}^0_{\epsilon} \to D^+_{\epsilon} \pi^-$ final states.
- Use opposite side + same-side kaon taggers to tag the initial flavour of the B_s^0/\overline{B}_s^0 (effective tagging power $\varepsilon D^2 \sim 3.1\%$).

 $\Delta m_s = 17.768 \pm 0.023 (\text{stat.}) \pm 0.006 (\text{syst.}) \text{ ps}^{-1}$ c.f. $17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$ @ CDF [PRL 97 242003 (2006)]

Mixing induced CP violation in B_s^0 -system

- Interference between mixing and decay gives rise to a \mathcal{CP} phase: $\phi_s = \phi_m - 2\phi_d$.
- For $B_s^0 \rightarrow J/\psi \phi$, $\phi_d = -2\arg(V_{cs}V_{cb}^*) \approx 0$ and

$$\phi_s^{\mathsf{SM}} = -2arg\left(rac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}
ight) = -0.036\pm0.002\,\mathrm{rad}$$

$$B_s^0 \xrightarrow{\phi_d} J/\psi\phi$$

Charles et al. [Phys. Rev. D84 (2011) 033005]

- Mixing phase, ϕ_m , from $\Delta B = 2$ box diagram.
- \rightarrow Sensitive to NP contributions.

Mixing induced CP violation in B_s^0 -system

- Can also look at $B_s^0 \rightarrow \phi \phi$ decays (gluonic penguin).
- Loop suppressed $\rightarrow 880 \pm 31$ candidates. Can also receive NP contribution to the decay.
- In the SM, partial cancellation between ϕ_m and $\phi_d \rightarrow \text{expect } \phi_s^{s\bar{s}s} \sim 0.$

 In both cases, perform a time dependent, flavour tagged, angular analysis to separate the CP-odd and CP-even final states.

CP even, CP odd, S-wave

CP even, CP odd, S-wave

æ

Mixing induced CP violation in $B_s^0 \rightarrow J/\psi \phi$

- Several improvements in the analysis from the preliminary result:
- 1. Added same-side kaon tagging, $\varepsilon \mathcal{D}^2 = (0.89 \pm 0.17)\%.$
- 2. Simultaneous fit in six bins of $m_{K^+K^-}$. The strong phase dependence across the ϕ pole-mass is used to resolve the sign of $\Delta\Gamma_s$.
- 3. Allow for CP violation in the decay,

$$|\lambda| = |rac{q}{p}rac{ar{A}_f}{A_f}| = 0.94 \pm 0.03 \pm 0.02.$$

 Dominant source of systematic uncertainty arises from the angular acceptance (limited MC statistics).

Mixing induced CP violation in $B_s^0 \rightarrow \phi \phi$

- Small dataset → Feldman Cousins (pseudo-experiments) are used to provide the correct coverage.
- The result is statistically limited.

 $\phi_{\rm s}$ in interval [-2.46, -0.76] $\rm rad$ at 68% CL.

- p-value of $\phi_s = 0$ is 16%.
- The dominant sources of systematic uncertainty arise from:
 - the description of the decay time acceptance;
 - the knowledge of the S-wave contamination from $B_s^0 \to f^0 \phi$ and $B_s^0 \to f^0 f^0$.
- Interesting analysis to pursue with larger datasets (NB: we have an additional 2 fb⁻¹ on tape).

Mixing induced CP violation in the B_s^0 -system

 HFAG Fall 2012 combination of results from CDF & D0, the old LHCb preliminary result and an untagged analysis from ATLAS.

LHC Seminar Jeroen Van Tilburg (Ruprecht-Karls-Universitaet Heidelberg (DFN) New results on CP violation in the charm Heidelberg (DE)) SPEAKER: Tue 12/03/2013 11:00 sector TITLE: Council Chamber DATE: PLACE:

CP violation in the charm sector

[LHCB-PAPER-2013-003], [LHCB-CONF-2013-003]

Link to seminar: http://indico.cern.ch/conferenceDisplay.py?confld=240082

2

・回・ ・ヨ・ ・ヨ・

Direct CP violation in charm

- CP violation is well established in the K and B systems.
- Not yet established in the charm sector:
 - CP violation in singly-Cabibbo suppressed charm decays is expected to be small $\lesssim 0.1\%$ (but is difficult to calculate).
- With 0.6 fb⁻¹ LHCb measured $\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)$ % between K^+ K^- and π^+ π^- final states.
- HFAG world average shows 4.6σ evidence for CP violation in $D \rightarrow h^+h^-$ decays. For charm system $\Delta A_{CP} \approx \Delta a_{CP}^{dir}$.
- Triggered a detailed discussion in the theory community on SM predictions and possible NP interpretations.

A (1) > A (2)

Measuring ΔA_{CP}

• To determine the CP asymmetry of $D \rightarrow h^+ h^-$ decays need to tag the flavour of the D^0/\overline{D}^0 : μ^-

• Raw CP asymmetry $A_{RAW}(h^+h^-) \approx A_{CP} + A_D + A_P$ depends on the D^{*+}/D^{*-} (B/\bar{B}) production asymmetry and the π_s^{\pm} (μ^{\mp}) detection asymmetry. Can cancel A_P and A_D to first order by taking:

$$\Delta A_{CP} = A_{\mathsf{RAW}}(K^+K^-) - A_{\mathsf{RAW}}(\pi^+\pi^-) \approx A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

NB $A_{CP}(K^+K^-)$ and $A_{CP}(\pi^+\pi^-)$ expected to have opposite sign in SM.

Updating the $D^{*\pm}$ tagged analysis to $1 \, \mathrm{fb}^{-1}$

- Several analysis improvements:
 - Added an additional $0.4 \, \text{fb}^{-1}$.
 - Improved alignment and calibration used for the full dataset.
 - Improved $\delta m = m_{h^+h^-\pi^+} m_{h^+h^-} m_{\pi^+}$ mass resolution, by introducing a PV constraint in the vertex fit.

\rightarrow Updated value of:

$$\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\% \quad (Preliminary)$$

- Statistically compatible with the previous result.
- The dominant sources of systematic uncertainty arise from the:
 - treatment of possible peaking backgrounds (0.04%);
 - dependence of ΔA_{CP} on the impact parameter of π_s (0.08%).

ΔA_{CP} using semileptonic tags

- Estimate ΔA_{CP} by performing a simultaneous fit to the h^+h^- mass for D^0 and \overline{D}^0 tagged events.
 - Candidates are re-weighted to account for kinematic differences between $D \rightarrow K^+ K^-$ and $D \rightarrow \pi^+ \pi^-$.
 - Average results from two LHCb magnet polarities to further cancel detector asymmetries.

< 17 > <

ΔA_{CP} using semileptonic tags

- Signal samples of 560 k $D \rightarrow K^+K^-$ and 220 k $D \rightarrow \pi^+\pi^-$ decays.
- For the semileptonic tagged analysis:

$$\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14)\%$$

• The dominant sources of systematic uncertainty come from the:

- treatment of low lifetime backgrounds in $D \rightarrow \pi^+\pi^-$ (0.11%);
- kinematic re-weighting (0.05%);
- modelling of the D line-shape (0.05%).

• Measurements compatible at 2.2σ level: D^{*+} tag $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$ (preliminary) Semileptonic tag $\Delta A_{CP} = (+0.49 \pm 0.30 \pm 0.14)\%$

NB Naive average, ignores $a_{CP}^{\text{ind.}}$ and possible correlations between experimental uncertainties.

ightarrow Initial evidence for CP violation in the charm sector is not confirmed.

Exotic charmonium states [LHCb-PAPER-2013-001]

→ 三→

X(3872) meson quantum numbers

- X(3872) is an exotic charmonium state first observed by Belle [PRL 91 (2003)] in $B^+ \rightarrow K^+ \pi^- \pi^+ J/\psi$ decays.
- X(3872) also observed to decay as $X(3872) \rightarrow \gamma J/\psi$ by BaBar and Belle $(\rightarrow C = +1)$
- CDF excluded all J^{PC} except 1⁺⁺ and 2⁻⁺ [PRL 98 (2007)] using a 3D angular fit.

M(ππJ/ψ) – M(J/ψ)

• Determination of quantum numbers important for interpreting the nature of the X(3872):

$$\begin{array}{l} 1^{++} \ \bar{D}^0 D^{*0} \ \text{molecule}? \ \text{Tetra-quark}? \ \chi_{c1}(2^3 P_1)? \\ 2^{-+} \ \eta_{c2}(1^1 D_2)? \end{array}$$

X(3872) meson quantum numbers

- In 1 fb⁻¹ LHCb observes 313 ± 26 $B^+ \rightarrow K^+ X(3872)$ decays, with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$.
- Can distinguish between 1⁺⁺ and 2⁻⁺ using the 5-dimensional angular distribution of the decay:

Background subtracted using the sPlot technique.

Use the likelihood ratio:

$$t = -\log\left[\mathcal{L}(2^{-+}|\vec{lpha})/\mathcal{L}(1^{++})
ight]$$

as a test statistic.

•
$$t_{\mathsf{data}} = 99
ightarrow$$
 rejects 2^{-+} at 8.4σ

 $J^{PC} = 1^{++}$ consistent with molecular, tetra-quark and $\chi_{c1}(2^3P_1)$ models (which leaves room from for some of the more exotic interpretations)

[LHCb-PAPER-2013-009]

< ∃⇒

• SM "Higgs" like object has already been seen by ATLAS/CMS.

- At LHCb, search for neutral Higgs decaying to $\tau^+\tau^-$ in the 2 < η < 5 region.
 - Search performed with 1 fb^{-1} of integrated luminostiy at $\sqrt{s} = 7 \text{ TeV}$.
- ✓ Unique acceptance in the forward-region.
 - Sensitive to models where Higgs production in the forward region can be enhanced.
- Low efficiency to reconstruct both daughters inside the LHCb acceptance.

- Analysis performed using 5 categories: $\tau^- \tau^+ \rightarrow \mu^+ \mu^-$, $\mu^\pm e^\mp$, $e^{\pm}\mu^{\mp}, \mu^{\pm}h, e^{\pm}h.$
- Follow LHC Higgs Cross Section Working Group recommendations for the signal (FeynHiggs, HIGLU, GGH@NNLO, BBH@NNLO). Signal efficiency is data driven.

イロン イヨン イヨン イヨン

Backgrounds:

- $Z \rightarrow \tau \tau$ Using theoretical cross-section, shape from MC.
 - QCD Semileptonic b- and c-hadron decays.

Shape from isolation sideband, normalised w.r.t. same-sign.

EWK Lepton from W^{\pm} or Z plus track from underlying event. Shape from simulation, normalised w.r.t. same-sign.

- $t\bar{t}/WW$ Taken from simulation.
- $Z \rightarrow \ell \ell$ Shape from sidebands, normalised to peak.

• Combining the 5 channels, set model independent upper limits on $\sigma_{\Phi^0} \times \mathcal{B}(\Phi^0 \to \tau \tau)$ of 9.4pb (90 GeV/ c^2) – 0.3pb (250 GeV/ c^2)

Image: A math a math

-

proton-ion running

æ

-∢ ≣ ≯

A⊒ ▶ ∢ ≣

proton-ion running

- LHCb has collected $\sim 2 {\rm nb}^{-1}$ of proton-ion data:
 - $1.4 \mathrm{nb}^{-1}$ of *pPb* and $0.6 \mathrm{nb}^{-1}$ of *Pbp*
- Using SMOG system:
 - injection of Ne gas in interaction region.
 - $\rightarrow\,$ increased rate of beam-gas interactions for luminosity measurement.

we have also collected samples of minimum bias, fixed-target, pNe and PbNe data.

pPb pilot run [LHCb-CONF-2012-034] $\mathcal{L} \sim 0.9 \mu \mathrm{b}^{-1}$

æ

・ロト ・回ト ・ヨト ・ヨト

LHCb upgrade

æ

- 4 回 2 - 4 □ 2 - 4 □

LHCb upgrade

Aim to upgrade the LHCb detector during LS2 (2018), with the goal of reading out the full detector into a software farm at 40 MHz.

- Lol submitted in March 2011.
 - Physics case endorsed by the LHCC.
- Framework TDR submitted in May 2012.
 - Endorsed by the LHCC in September 2012.
- LHCb upgrade approved by Research Board in November 2012.
- We are now starting reviews in the individual sub-detectors (with external referees). These reviews will be completed this year.
- A supporting document on the upgrade physics and trigger is also being prepared.

The LHCb upgrade

・ロト ・回ト ・ヨト

- < ∃ >

First review: scintillating fiber tracker

• A scintillating fiber tracker is a possible replacement for the existing IT and OT . OUTER TRACKER INNER TRACKER

A (10) > (10)

250 μm scintillating fibers readout by 128 channel SiPM.

Figure 4: Cross section photograph of a recently built $2.5 \text{ m} \log scintillating-fibre module}$.

 Review focussed mainly on the radiation tolerance of the fibers/SiPM (see next slide).

Scintillating fiber tracker is viable from point of view of radiation tolerance.

First review: scintillating fiber tracker radiation tolerance

- Known issues with SiPM exposed to neutron fluence.
 - Existing SiPM technologies can keep noise/PDE at acceptable levels with a combination of cooling $(-40^{\circ}C)$ and shielding.
- Radiation tolerance of the scintillating fibers has also been explored.
 - Fibers have been exposed to 50 fb^{-1̄} equivalent of protons → degradation of the fibers is within the upgrade tolerance (40% closest to the beam line). A sizable fraction of the light loss can be recovered using a mirror at the end of the fiber.

Expected relative light yield before and after irradiation

Summary

The LHCb detector performed well during 2012.

proton-ion data taking opens up new possibilities for the LHCb physics programme (unique forward acceptance).

> Preparation for the LHCb upgrade is ongoing. Sub-system reviews will take place this year.

> > Expect many new/updated results with the full 3 fb^{-1} dataset during LS1.

SHUTDOWN: NO BEAM

Finally, we would like to express our thanks to the CERN accelerator groups for the excellent performance of the LHC in 2012-2013

	BIS status and		B1	B2	
Comments (21-Feb-2013 09:05:25)	Link Stat	ermits	false	false	
Phone:77600	Glob	nit 📕	false	false	
			true	true	
No beam for a while. Access required time estimate: ~2 years	Be		false	false	
	Moveable	wed In	false	false	
,	Stable Beams			false	false
AFS: Single_36b_4_16_16_4bpi9inj	PM Status B1	ENABLED	PM Status B2	EN	ABLED
T. Blake	LHCb status report				49 / 49

T. Blake LHCb status report

・ロト・(四ト・(川下・(日下・(日下)

ΔA_{CP} using semileptonic tags

T. Blake

Difference with previous result

 $\Delta A_{CP} = (-0.82 \pm 0.21 \pm 0.11)\% \implies \Delta A_{CP} = (-0.34 \pm 0.15)\%$

- The central value is considerably closer to zero than the previous result
- Several factors can contribute to the change
 - larger data sample •

LHCh

- change in detector calibration (PID and alignment) ٠
- difference in the analysis technique

Data overlap within the same run period (0.6 fb⁻¹)

- In new result, 15% (K⁻K⁺) and 14% ($\pi^{-}\pi^{+}$) of events no longer selected ٠
- ~85% of events selected in both old and new processing. ٠
 - Old: $\Delta A_{CP} = (-0.80 \pm 0.23)\%$
 - New: $\Delta A_{CP} = (-0.78 \pm 0.23)\%$
- In new result, 17% (K⁻K⁺) and 34% ($\pi^-\pi^+$) of additional events selected ٠
 - Including additional events: $\Delta A_{CP} = (-0.55 \pm 0.21)\%$.
 - Additional events statistically in agreement with old result.

Difference with previous result

New data 0.4 fb⁻¹

- Last 0.4 fb⁻¹ recorded by LHCb in 2011 :
 - $\Delta A_{CP} = (-0.28 \pm 0.26)\%$
- Fitting all the 1.0 fb⁻¹:
 - ΔA_{CP} =(-0.45 ± 0.17)%

Effect of constraining D* to primary vertex

- Constraint improves the δm resolution by a factor 2.5.
 - · Better background rejection and reducing the statistical uncertainty
- Change in ΔA_{CP} is 0.11%
 - Expected variation (pseudo-experiments): ±0.05%

Difference between old and new result understood. Compatible with statistical fluctuations.

New results on CP violation in the charm sector, Jeroen van Tilburg

Source	Γ_s	$\Delta \Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[ps^{-1}]$	$[ps^{-1}]$			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$^{+0.13}_{-0.21}$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 \rightarrow J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	-	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	-	-	-	-	-	-	-
z + p scale	0.0009	-	-	-	-	-	-	-
Fit bias	-	-	0.0010	-	-	-	-	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.07	0.009	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	+0.15 -0.23	0.23	0.091	0.038

æ

・ロト ・四ト ・ヨト ・ヨトー

Light yield loss: with mirror and timing cut

Attenuation versus y position (x = 1 m means almost no radiation effect)

-x = 0 -x = 1 m -x = 0 no mirror -x = 1 m no mirror

• Effect of mirror and timing cut is to reduce light yield spread for all hits along the 2.5m long fiber

- Background subtracted angular distribution (of cos θ_X).
- Overlaid with the expected angular distribution of J^{PC} = 1⁺⁺ and 2⁻⁺ X(3872) decay decays.

Λ_b^0 production polarisation

[LHCb-PAPER-2012-057]

Λ_b^0 production polarisation

- Longitudinal polarisation vanishes but, transverse polarisation could be large ($\sim 20\%$) at the LHC [PLB 614 (2005)].
- Non-zero transverse polarisation has consequences for rare decay measurements.
 - Take advantage of production polaristation in $\Lambda_b^0 \rightarrow \Lambda^0 \gamma$ and $\Lambda_b^0 \rightarrow p K \gamma$ decays to determine the photon polarisation, e.g. G. Hiller et al. [arXiv:hep-ph/0702191]
 - NB In SM expect γ_R supressed by m_s/m_b w.r.t. γ_L . Could be enhanced in many NP models.
- $\Lambda_b^0 \rightarrow \Lambda^0 J/\psi$ angular distribution depends on the polarisation factor (P_b) and 4 helicity amplitudes.

Λ_b^0 production polarisation

- Simplify the angular distribution by integrating over 2 of the 5 angles.
- Polarisation (P_b) and Parity violating asymmetry factor (α_b) consistent with zero:

 $\begin{array}{ll} P_b & 0.05 \pm 0.07 \pm 0.02 \\ \alpha_b & 0.04 \pm 0.17 \pm 0.07 \end{array}$

 \rightarrow Rejects HQET prediction of large α_b [PLB 614 (2005)].

$b\overline{b}$ forward central asymmetry

[LHCb-CONF-2013-001]

- Large tt
 t A_{FB} seen in pp
 collisions at TeVatron (2.5σ from SM).
 - SM contribution arises from interference between LO and NLO $q\bar{q} \rightarrow t\bar{t}$ diagrams.
- At LHC we don't know the direction of the initial partons, measure a forward-central asymmetry:

$$A_{FC} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

• ATLAS and CMS see $A_{FC}^{t\bar{t}}$ close to SM predictions, what about A_{FC}^{bb} ?

$b\overline{b}$ forward-central asymmetry

- Two back-to-back anti- k_T jets (R = 0.5) with $p_T > 15 \text{ GeV}/c$, corrected back to the quark level using MC ($\sigma(\Delta y) \sim 0.1$).
- b-tag based on 2-, 3 and 4-track displaced vertices (profit from the LHCb trigger).
- Tag *b*-flavour by requiring that the hardest track is a muon.

