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1. Introduction 

 

Crystalline undulator radiation (CUR) is formed planar channeled relativistic positron between 

periodically curved crystallographic planes, what was predicted in the work [1]. Both amplitude and 

spatial period of the crystalline undulator are much more than amplitude and the spatial period of the 

positron oscillation.  

In the work [2] the problem of CUR considered with taking into account the polarization of the 

medium, and is shown that besides the lower threshold for the energy occurs as the upper threshold 

for the amplitude of crystalline undulator:  ������� = 	
 �√2�⁄  ,where		
 is the plasma wavelength 

of the crystal,	� is the harmonic number. 

Specified in the work [1] limit on the amplitude corresponds to the first harmonic of radiation. CUR 

was theoretically investigated in many papers [3-5]. The works [6,7] show, using dense positron 

beams, one can produce stimulated CUR (SCUR). In this paper we investigate the problem of the 

positron radiation in the crystalline Wiggler (CW). 
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2. Restrictions on positron energy and Wiggler parameters 

Wiggler unlike undulator is characterized by a large value of the parameter � = ���, where � is the 

Lorentz factor of a positron, �� = 2�� �⁄  is maximum deflection angle of CW sine-plane (� is 

amplitude and � is spatial period of CW). From the condition � ≫ 1, it is followed that bottom 

threshold of a positron energy  ���� ≪ �. On the other hand, special period � of CW much more 

than special period ��� = ��√� �⁄  of channeled positrons, where � is interplanar distance, 

parameter � = �2��  !"⁄  characterizes the depth of the potential well ��,  !" is the rest energy 

positron. So, energy positron is limited, and from below, and from above we have: 

	���� ≪ � ≪ ��� ��⁄ �".                    (1)            

Spatial period of the Wiggler is bounded from above with the condition  #� ≤ %& , where %& is the 

dechanneling length, and  #	�# ≫ 1� is the period number of CW.  

As it is known, average continuous field in the planar channel is well enough described by a 

parabolic potential. Then holding force, acting on a positron, equal to 4�� �⁄  and must be greater 

than the centrifugal force  !"� ()*+⁄ 	, where ()*+ = � 2���⁄  is the minimum radius of curvature 

planes, when the curvature describes the harmonic function. Taking into account of bottom 

threshold on � (1) we have the following limitation for the spatial period CW.  
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./ ≪ � ≤ 01
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3. Total spectrum of high harmonic 

For frequency-angular distribution of the number of photons n-th harmonic radiation per unit path 

we have 

-23
-4-5/-Φ-6 = 7

8 9:; − +
54=

" + :+ ?@AΦ

54 =
"B C+"��;D cosΦ�HI;" − J+�D�K  ,     (3) 

where L is the fine structure constant,	; = �M, M and Φ is the polar and azimuthal angles of 

radiation,  D = N Ω�"⁄  is a dimensionless frequency,	Ω = 2πc �⁄  is the oscillation frequency of the 

positron in CW,   n is the harmonic number, C+ is a Bessel function of n-th order. Function J+�D�, 
which is included in the argument of the  H-function, is equal to 

J+�D� = "+
4 − O − �/

4/ ,                                                                                      (4) 

where O = 1 + �" 2⁄ ,  P = �
 �⁄  ,  �
 = � 	
⁄ .                                                  

The account of the polarization of the medium [2] leads to the following restriction on the frequency 

of the radiation: 

+
7 Q1 − R1 − S�/

+/ T < D < +
7 Q1 + R1 − S�/

+/ T.                                                   (5) 

Condition for the formation of radiation n-th harmonic: 

S�/
+/ = :VWXYV =

" + : Z
ZWXY=

"
,                                                                                    (6) 

where ���� = �
 �⁄  , ���� = �� �⁄ , �� is the upper limit of the amplitude curvature for the first 

harmonic. 

In CW provided that 	� < ����	  we  have	� ≫ ���� . Consequently, unlike crystalline undulator, 

CW exists only on the amplitude threshold. 

 

 

 

 

 

 

 



For the frequency distribution of the positron radiation from the path length �� after integration over 

the angle we get: 

-23
-4-Φ

= L#[+�D�C+"��\+�D� cosΦ�  ,                                                               (7) 

[+�D� = :J+�D� − +
4]3�4�=

" + :+ ?@AΦ

4]3�4�=
"
 ,  \+�D� = D�J+�D�  . 

 

Function  \+�D�  takes its maximum value at a frequency  D+ = � O⁄  : 

                 ^D	\+�D� = \+ :+S= = +
�SR1 − : Z

ZWXY=
"
 ,                                        (8)              

 which with the condition � ≪ ���� 	с with an accuracy of	 ^D _ �"`/ , : Z
ZWXY=

"b equals to �√2.  

Therefore, the argument n√2 cosΦ of the Bessel function with the condition Φ ≤ ,
d  is more than � 

or equal �.  

We use the following asymptotic formula of the Bessel function for large values of the order of �: 

C+I� + �� e⁄ fK = :"+=
� e⁄ �*I−2� e⁄ fK + Ο�����,                                                (9) 

where Airy function �*I−2� e⁄ fK with the condition 	f < 0 decreases rapidly. Here value of 

	f = I√2 cosΦ− 1K�" e⁄  is positive for Φ ≤ ,
d. If cosΦ replace the mean value 〈cosΦ〉 in the range 

0 ≤ 	Φ ≤ � 4⁄  , which is equal to  0.94 , that  √2〈cosΦ〉 − 1 ≈ 1 3⁄   and 	f = 1 3⁄ �" e⁄ . 

Since the width of the Airy function order of unity, it is easy to show that the number of harmonics, 

whose spectra overlap each other, have almost the same intensity equal to  3�� e⁄  . 

The value of the function [+�D�, when D = � O⁄ ,  

with accuracy up to small order 1 O⁄  is equal to O". On the other hand, using the asymptotic 

expression of the Bessel function 

                        C+" = :"n=
" e⁄ �

Г
/:/o=p/ o⁄

⋍ �."
+/ o⁄                                                        (10)                        

and passing from discrete values  D+ = � O⁄   to be continuous,  for the total spectrum of photons 

one get: 

 
-2WrW
-4 = ∑ -2t

-4 = 0.6+ve+w o⁄xy+ L#Oz {⁄ D� e⁄⁄ .                                                          (11)  

The frequency spectrum of the radiation intensity is given 

-|WrW
-4 = 0.6L#Oz e⁄ D" e⁄ ℏΩ�". Thus, the emission spectrum of the number of photons in the CW 

decreases as D� e⁄  , and the spectrum intensity increases as  D" e⁄ . 
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4. Discussion 

 

The problem is solved in the framework of the classical theory. 

We find the boundary frequency D� , when the positron loses whole its energy: 

 
|WrW
V)�/ = 0.36L	� 
V8 �O	D��z/e ≤ 1,                                                       (12) 

where 	� is the Compton wavelength of positron. As a result: 

 D� = 2.07 ∙ 10{� 8
V�e/z/O.                                                                      (13) 

Such a rough assessment was necessary for the correct selection of the maximum frequency D): 

�D)/D��z/e ≪ 1                                    (14) 

Consider the energy loss of a positron with energy of 10 GeV in CW with parameters: 

� = 10�"! ,  � = 8 ∙ 10�{! 	�� ≈ 10, O ≈ 50�, % = 1! 	�# = 10"�.  
  

 Using the formula (14) we get D� = 4. In the frequency range with maximum photon frequency 

D) = 1 the positron losses 4.6% of its energy, or 460 MeV energy. Since the energy loss of the 

positron in CW is significant, it is necessary to take them into account when solving this problem.           

5. Conclusion 

In the crystalline Wiggler relativistic channeling positron loss the significant part of its energy on 

the radiation of higher harmonics. The total frequency spectrum is formed by overlapping 

neighboring harmonics of radiation. Radiation is concentrated in a solid angle, whose centre is in the 

plane of the positron motion (� = 0). Polar angles of radiation are located around a small angle 

M) = �� √2⁄  with the width of the same order and the width of the azimuthal angle is of order 

Δ� ≃ 1 3⁄ . Spectrum of the number of radiated photons with increasing frequency decreases by the 

law D�� e⁄ , and the spectrum of the  positron energy losses is growing by the law D" e⁄ . 

The energy loss of a positron in CW is significant. 

Classical theory is applicable in a limited interval of frequencies, because when in case of the theory 

of radiation taking into account the photons with large frequency, the energy losses become of the 

order of positron energy. 
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