

Quantum Jumps in PXRC Angular Distributions from Relativistic Channeled Electrons in a Crystal

K.B. Korotchenko and Yu.L. Pivovarov

National Research Tomsk Polytechnic University Tomsk, Russia

Two types of X-Radiation from relativistic electrons in a crystal

H.Nitta: Channeling 2008 → CLASSIFICATION

Terminology (definitions):

PXR = Parametric X-Radiation = from non-channeled electrons = diffraction of relativistic electron electromagnetic field (VIRTUAL PHOTONS) on the CRYSTALLOGRAPHIC PLANES = well known since first experimental observation (1985, Tomsk, electron synchrotron "Sirius")

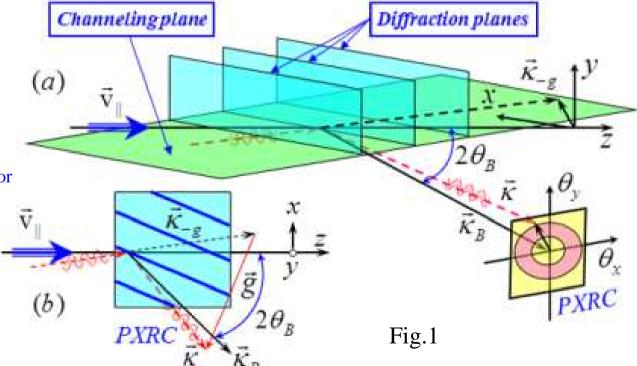
PXRC = Parametric X-Radiation from channeled electrons = first predicted by H.Nitta et al (1996) = first observed and explained in 2012 at SAGA-LS (Japan) [28]

XR vs PXRC: change of relativistic electrons states:

Plane waves $(PXR) \rightarrow$ transverse quantum states bound to the channeling planes (PXRC)

PXRC at planar channeling

PXRC appears when an electron penetrates through a crystal at the channeling condition: electron is in a transverse quantum bound state with a crystal plane while its longitudinal (parallel to a plane) motion is free


a) The scheme of observing the **angular distribution** of **PXRC -** 3D view

 $heta_B$ is the Bragg angle

 \vec{g} is the reciprocal lattice vector

 $\vec{\mathbf{v}} = c\vec{\boldsymbol{\beta}}$ is the electron velocity

b) The schematics of mutual arrangement of the vectors

Experiment

ISSN 0021-3640, JETP Letters, 2012, Vol. 95, No. 8, pp. 433-437. © Pleiades Publishing, Inc., 2012.

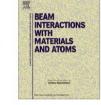
Quantum Effects for Parametric X-ray Radiation during Channeling: Theory and First Experimental Observation[¶]

K. B. Korotchenko^a, Yu. L. Pivovarov^a, and Y. Takabayashi^b

^a Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, Tomsk, 634050 Russia e-mail: korotchenko@tpu.ru
^b SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan Received March 16, 2012

The theory of X-ray radiation from relativistic channeled electrons at the Bragg angles—parametric X-ray radiation (PXR) during channeling (PXRC)—is developed while accounting for two quantum effects: the initial population of bound states of transverse motion and the transverse "form-factor" of channeled electrons. An experiment was conducted using a 255 MeV electron beam from a linac at the SAGA Light Source. We have identified a difference in the angular distributions of PXR and PXRC and obtained a fairly good agreement between the theoretical and experimental results.

DOI: 10.1134/S0021364012080073


Experiment

Nuclear Instruments and Methods in Physics Research B 309 (2013) 25-29

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Experimental and theoretical study of PXRC (Parametric X-Radiation at Channeling) from 255 MeV electrons in Si

K.B. Korotchenko a,*, Yu.L. Pivovarov a, Y. Takabayashi b

ARTICLE INFO

Article history:
Received 2 December 2012
Received in revised form 31 January 2013
Accepted 5 February 2013
Available online 26 March 2013

Keywords: Channeling in crystals Quantum electrodynamics X-ray diffraction

ABSTRACT

The X-radiation from relativistic channeled electrons at the Bragg angles – Parametric X-Radiation at Channeling (PXRC) – is studied both experimentally and theoretically. The experiment was carried out using a 255 MeV electron beam from a Linac at newly constructed beam line for the study of interactions between a relativistic electron beam and crystals at the SAGA Light Source. The observed asymmetry of PXRC angular distribution at (220) planar channeling in a 20 µm Si is explained taking account of two quantum effects: initial populations and transverse form-factors of the quantum states of planar channeled electrons. Further perspectives for PXRC studies at SAGA-LS are analyzed.

© 2013 Elsevier B.V. All rights reserved.

^a National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

^b SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan

PXRC from planar channeled electrons

Angular distribution of PXRC from channeled electron being in a quantum state *n* of transverse motion

$$I_{\text{PXRC}}^{n} = \frac{d^{3}N_{nn}}{d\theta_{x}d\theta_{y}dz} = I_{\text{PXR}} |F_{nn}(q)|^{2}$$

$$I_{\text{PXR}} = \frac{\alpha \omega_B}{16\pi c \sin^2 \theta_B} \left[\frac{\theta_x^2}{1 + W_\pi^2} + \frac{\theta_y^2}{1 + W_\sigma^2} \right]$$

$$\left(|F_{nn}|^2 = |\int_{-d/2}^{d/2} \phi_n^*(y) \exp(-i\omega_B \theta_y y/c) \phi_n(y) dy |^2 \right)$$

$$W_{\tau} = \frac{1}{2 |\chi_{g}| P_{\tau}} (R - \frac{|\chi_{g}|^{2} P_{\tau}^{2}}{R}), \ \tau = (\pi, \sigma),$$

$$R = \left[\theta_x - \frac{\Omega_{if}}{\omega_B} \cos \theta_B\right]^2 + \theta_y^2 + R_o,$$

$$R_{\circ} = \theta_{kin}^2 - 2\frac{\Omega_{if}}{\omega_B}, \; \theta_{kin}^2 = \gamma^{-2} + |\chi_0|,$$

the **form-factor** of the transverse quantum channeling state with the number n.

Here $\hbar\omega$ is the energy of PXRC photon, $\phi_n(y)$ is the wave function for planar channeled electrons and d is the distance between the channeling planes, $\alpha = e^2/c\hbar$

PXRC from planar channeled electrons

The PXRC angular distribution

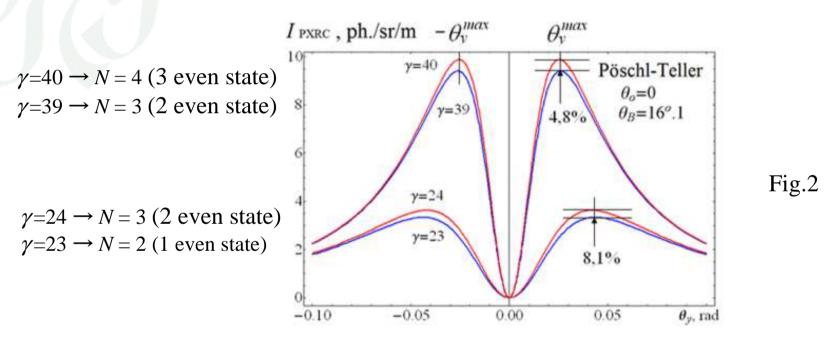
$$I_{\text{PXRC}} = \sum_{n=1}^{N} I_{\text{PXRC}}^{n} P_{n}(\theta_{0}) = I_{\text{PXR}} \sum_{n=1}^{N} P_{n}(\theta_{0}) |F_{nn}(q)|^{2}$$

N - is the number of quantum channeling states

Initial population of the *n*-th quantum channeling state

$$P_n(\theta_0) = \frac{1}{d} \left| \int_{-d/2}^{d/2} e^{ip\theta_0 y/\hbar} \varphi_n(y) dy \right|^2$$

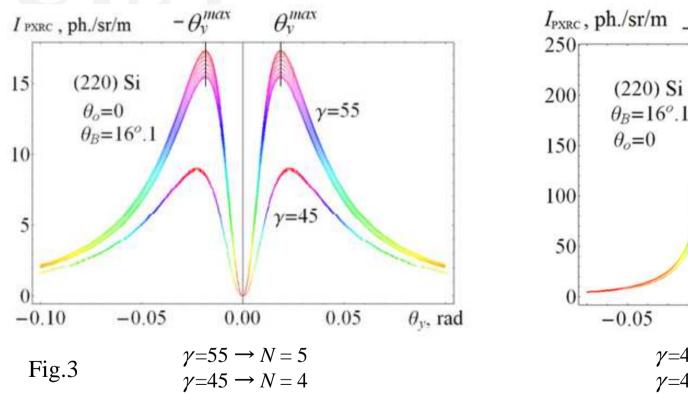
 $\theta_{\rm o}$ - is an angle of incidence of electron beam with respect to the channeling planes (p is initial momentum of electrons)

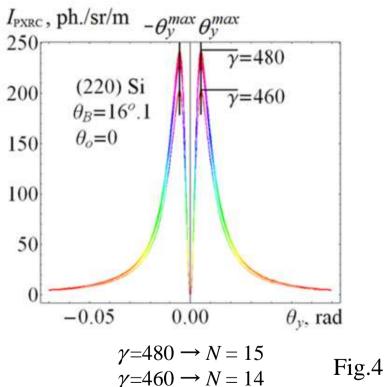

- **Key question:** what we are looking for comparing PXR and PXRC at different electron beam energies?
- Answer: appearance of quantum jumps connected with increase of the number N of quantum channeling states when electron beam energy (relativistic factor) increases

Separate channeling plane approximation

Pöschl-Teller potentilal

$$U(y) = -U_0 \cosh^{-2} \lambda y$$


The maximums of I_{PXRC} observed at $\theta_y = \pm \theta_y^{max}$


The change in the number of bound states N leads to the more prominent change in I_{PXRC} only when the next quantum channeling state becomes populated

Beyond the separate plane approximation

PXRC angular distribution calculated with the "true" periodic planar (220) Si channeling potential I_{PXRC}

The maximums of I_{PXRC} observed at $\theta_y = \pm \theta_y^{max}$

Beyond the separate plane approximation

The maximums of PXRC and PXR (dashed line) as the function of γ in the (220) Si (in the plane $\theta_x = 0$)

$$I_{PXRC}^{max}(\gamma) = I_{PXRC}(\gamma) \big|_{\theta_{y} = \theta_{y}^{max}}$$

The number N of bound channeled states as the function of γ

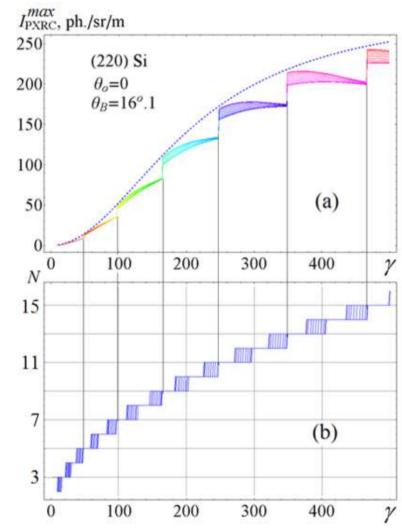


Fig.5

Comparison of PXRC and PXR

	(220) Si		Pöschl-Teller	
γ	45	55	23	24
I_{PXRC}^{max}	7.988.15	15.417.3	3.3330	3.6240
I_{PXR}^{max}	12.4	18.2	3.3331	3.6245

Table 1

Table 1

Fig.5

The "quantum jumps" in angular distributions of PXRC from channeled relativistic electrons in a crystal **really exist**

To characterize the difference in angular distributions of PXR and PXRC, we introduce the quantity

$$\delta = \delta(\theta_y^{max}; \gamma) = \frac{I_{PXR}^{max} - I_{PXRC}^{max}}{I_{PXR}^{max}} \equiv$$

$$\equiv 1 - \sum_{n} P_n(\theta_0) \left| F_{nn}(\theta_y^{max}) \right|^2,$$

Dependences on relativistic factor

maximum values of the quantity δ

Number N of bound channeling states for (220) planar channeling in a Si crystal calculated in a separate-plane approximation (the Pöschl-Teller potential with $U_0 = 21,17 \text{ eV}$).

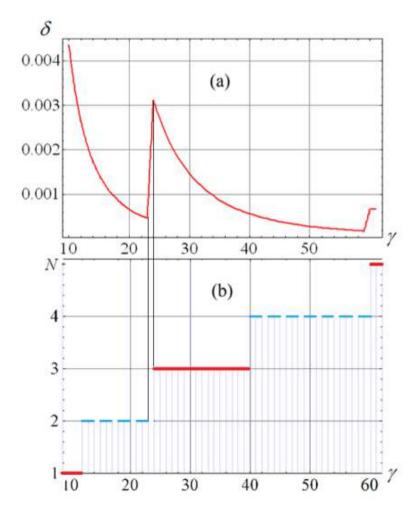


Fig.6

Dependences on relativistic factor

maximum values of the quantity δ

Number *N* of bound channeling states for (220) planar channeling in a "real" 1D periodic potential Si crystal

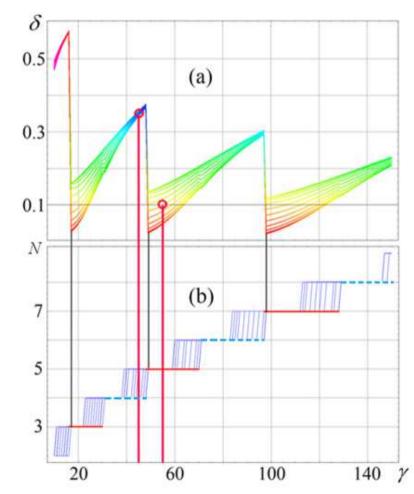


Fig.7

Conclusions

For the **parametric X-radiation at channeling** (PXRC) at zero **incident angle** of electrons with respect to the channeling planes **the difference** δ depends on the **relativistic factor** of channeled electrons, which defines the number of bound quantum channeling states.

Based on these idea we predict:

quantum jumps in angular distributions of parametric X-radiation from channeled relativistic electrons (PXRC)

The effect is connected with:

- a)the number of quantum states of channeled electrons
- b)form-factor of the transverse quantum channeling states
- c)initial population of these quantum states.

Every **quantum jump** in PXRC angular distribution is connected with appearance of every new quantum channeling state with increase of the electron beam energy.

Thank you for attention