X-ray imaging based on small-angle X-ray scattering using spatial coherence of parametric X-ray radiation

Yasushi HAYAKAWA

Laboratory for Electron Beam Research and Application (LEBRA),

Institute of Quantum Science,

Nihon University

RREPS-13 (23-27 Sep. 2013, Sevan, Armenia)

Collaborators

- Y. Hayakawa¹, K. Hayakawa¹, M. Inagaki¹,
- T. Kaneda², K. Nakao¹, K. Nogami¹, T. Sakae²,
- T. Sakai¹, I. Sato³, Y. Takahashi⁴, T. Tanaka¹
- ¹Laboratory for Electron Beam Research and Application (LEBRA), Institute of Quantum Science, Nihon University
- ²Nihon University School of Dentistry at Matsudo
- ³Advanced Research Institute for the Science and Humanities, Nihon University
- ⁴Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)

Outline

LEBRA facility at Nihon University & the LEBRA-PXR source

- □ Diffraction-enhanced imaging (DEI) using the LEBRA-PXR source
- □ Imaging technique based on small-angle X-ray scattering (SAXS)

■ Summary & prospects

Nihon University

LEBRA facility

LEBRA: Laboratory for Electron Beam Research & Application

elctron energy: 125MeV(max.), 100MeV(typ.)

average current : $5\mu A$ (max.), $1 - 3\mu A$ (typ.)

Tunable light source facility bunche : electron inac THz-CSR (coherent iccel. tube synchrotron radiation) klystron O-magnet bending magne PXR (parametric X-ray electroncrystal mirror radiation) source : 5 - 34keV parametric X-ray beam dum (PIR) generator laser expander undu laxor FEL system electron X-ray beam undulator experimental infrared FEL (free electron hall near-infrared laser) : 1μm – 6μm FEL

Beamlines (PXR & FEL)

Double crystal system for PXR

To actualize an X-ray source based on PXR, a double crystal system was proposed and developed.

The 1st crystal is a target of electron beam and a radiator of PXR.

The 2nd crystal is a reflector to transport PXR through a fixed exit port penetrating 2m shield wall.

Radiator of the PXR source

PXR radiator: 0.2mm thick Si perfect crystal wafer reflector: 5mm thick Si perfect crystal plate crystal plane:

Si(111) for 5 – 20keV Si(220) for 6.5 – 34keV

Status of LEBRA-PXR source

electron energy accelerating frequency bunch length macropulse duration macropulse beam current repetition rate average beam current electron beam size X-ray energy range

irradiation field total photon rate **100 MeV**

2856 MHz

~3.5 ps

4 - 10 μs

~130 mA

2-5 pps

 $1 - 3 \mu A$

0.5 - 1mm in dia.

Si(111): 5-20 keV

Si(220): 6.5 - 34 keV

100 mm in dia.

 $\geq 10^7 \text{ /s } @ 17.5 \text{keV}$

Feature of LEBRA-PXR source

- X-ray energy does not depend on the electron energy but on the crystal arrangement (Bragg angle).
- Wide and continuous tunability
 Si(111): 5 20keV, Si(220): 6.5 34keV
- Cone-beam depending on $1/\gamma$ Irradiation field of 100mm in diameter at the exit window (distance from the source to the window: 7.3m)
- PXR beam has energy dispersion (spatial chirp) along the horizontal direction.

X-ray imaging (absorption contrast)

PXR radiator: Si(111)

PXR energy: 17.5keV (center)

e-beam: 2.6uA (average)

sample: calculator

detector: imaging plate (IP)

exposure: 10s

PXR radiator: Si(111)

PXR energy: 17.5keV (center)

e-beam: 2.6uA (average)

sample: human tooth

detector: flat panel detector (FPD)

Spatial chirp of PXR beam

Wave front of PXR is different from both plane wave and spherical wave.

Typical result of DXAFS experiment

"Spatial chirp" can be used for dispersive X-ray fine structure analysis.

radial distribution function

(+, -, +) arrangement

Bragg angle:

larger for longer wavelengths smaller for shorter wavelengths

Using a 3rd analyzer crystal in the (+,-,+) arrangement, the whole of a PXR beam can be diffracted with a narrow angular width despite the cone-beam. (pseudo-plane wave)

Phase-contrast X-ray imaging

R. Fitzgerald: Phys. Today 53 (2000) 23

interferometer-based technique Si perfect crystal interferometer Talbot interferometer

analyzer-based technique
DEI: diffraction-enhanced
imaging

propagation-based technique

The narrow diffraction width means that DEI is possible using PXR.

Setup of DEI experiments

Due to the extension of conebeam, a wide irradiation field can be obtained without asymmetric analyzer.

The distance between the PXR source and the sample is shorter than 10m.

Interaction between X-rays and sample materials

absorption (amplitude attenuation)

refraction (phase shift)

small angle X-ray scattering (SAXS)

Transformation of rocking-curve shapes

absorption: reduction of the area of the curve

refraction: shift of the center of the curve

small-angle scattering: reduction of the peak height (or peak broadening) of the curve

The angular resolution for refraction and scattering depends on the diffraction width of the analyzer crystal.

Experiment for demonstration

PXR source:

radiator-reflector: Si(220)-Si(220)

electron energy: 100MeV

average beam current: 3µA

PXR energy: 25.5keV

photon rate: $\sim 10^6 / s / 100 \text{mm}$ in dia.

Sample:

acrylic rod (3mm in dia.)

density: 1.17 g/cm³

styrene-foam rod (6mm in dia.)

density: 0.16 g/cm³

polystyrene rod (3mm in dia.)

density: 0.986 g/cm³

DEI measurement setup:

analyzer: Si(220)

160mm x 35mm x 5mm

angular step: 0.4625 µrad

image sensor: X-ray CCD

 $(Q.E. @25.5 \text{keV} \sim 10\%)$

pixel size: 24μm x 24μm

Result of DEI measurement

The DEI image contrast varies according to the analyzer angle.

Rocking curves at each ROI

absorption-contrast image

complex refraction index:

$$n(x,y) = 1 - \delta(x,y) + i \beta(x,y)$$

 $\delta, \beta \propto \rho : \text{density}$

Integral with respect to θ $I_{\text{abs}} = \sum I(x, y, \theta)$

$$\ln(I_{\text{abs}}(x,y)/I_0) \propto \beta(x,y)$$

$$\propto \rho(x,y)$$

phase-gradient image

phase-gradient
(refraction-contrast) map

$$\sum \theta I(x,y, \theta) / \sum I(x,y, \theta)$$

$$+_{x} \propto \partial \delta(x,y) / \partial x$$

phase image

phase map

$$\delta(x,y) = \int \partial \delta(x,y) / \partial x \, dx$$

$$\propto \rho(x,y)$$

X

Visibility contrast due to SAXS effect

visibility contrast: $I(x,y, \theta=0) - I(x,y, \theta=2\sigma)$

SAXS-based (visibility-contrast) image

the contrast is sensitive to the styrene-foam region independently of the density and the shape of the sample.

Small angle X-ray scattering (SAXS)

$$q = |\mathbf{q}|$$

$$= (4\pi/\lambda) \sin(\theta/2)$$

Guinier approximation:
$$I(q) = I_0 \exp(-\frac{1}{3}R_g^2 q^2)$$

 R_{o} : inertial (gyration) radius

Guinier plot

For more exact estimation, the sample thickness has to be optimized.

Summary

- Combining the cone-like divergence and the spatial chirp of PXR allows DEI using a PXR beam in the (+,-,+) arrangement.
- ➤ X-ray refraction and small-angle X-ray scattering (SAXS) due to sample materials can be measured simultaneously by the DEI method.
- DEI experiments using PXR successfully demonstrated that SAXS-based imaging is sensitive to micro structures of sample materials smaller than the pixel size of the image sensor.
- ➤PXR beam has a sufficiently high spatial coherence to detect scattering angles in the range of micro-radian.

Prospects for application

SAXS based imaging is very sensitive to micro structures of sample materials. expected application:

- •analysis for material science nano-material, liquid crystal, ...
- •Analysis for bio-chemical science macromolecular, protein, ...
- •pathological examination tissue fibrosis, ...

Acknowledgements

- Nihon University Multidisciplinary Research Grant for 2012 (Sogo: 12-19)
- MEXT.KAKENHI (24651105, 24560069)

Thank you for your kind attention !!