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•Radiation from charged particles in periodic structures has 

a number of remarkable properties and is widely used in 

various regions of science and technology 

 

•Generation of the electromagnetic radiation in various 

wavelength ranges by beams of charged particles 

 

•Determination of the characteristics of emitting particles by 

using the properties of the radiation field 

Radiation in periodic structures 



Examples 

•Transition radiation from a charge traversing a stack of 

plates or moving in a medium with periodically varying 

dielectric permittivity  

 

•Smith-Purcell radiation, which arises when charged particles 

are in flight near a diffraction grating  

 

•Smith-Purcell radiation  is one of the main mechanisms for 

the generation of electromagnetic waves in the millimeter and 

submillimeter wavelength range 



Geometry of the problem and the spectrum 

Equation of the interface 
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Waves emitted from two neighboring 

humps of the surface wave are in phase 
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Radiation intensity (methods used) 

•For the evaluation of the radiation intensity in the Smith-

Purcell effect various approximate methods were used 

(see A. P. Potylitsyn, Radiation of electrons in periodic 

structures (2009)) 

•For the problem under consideration we have used two 

independent approximate methods 

 

 

 

•High-amplitude surface waves are excited with nano-

second laser pulses 

(i)  Small permittivity changes (                      ) 

(ii) Small amplitude wave 

001  



Radiation intensity: First method 

Spectral-angular density of the radiation intensity for a given 

m in the case  

There is no radiation radiation for  
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For                      one has 

Radiation intensity: Limiting case 



Radiation intensity: Spectral-angular distribution 

Spectral-angular distribution of the radiation intensity 
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Radiation intensity (numerical results) 

Electron energy = 100 MeV, 

Sinusoidal surface wave xaxf sin)( 
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Radiation intensity (numerical results) 

Electron energy = 100 MeV, 9.2  ,1 10  
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Radiation from an electron bunch 

Monoenergetic bunch of N particles 

Geometry of the problem 



Radiation intensity 

Spectral density of the radiation energy flux in the 

medium       for a given m 
corresponding function for the 

radiation of a single charge 

, , 

Position of the j th particle in the bunch at 

the initial moment 



Bunch form factor 

Averaging over the positions of a particle in the bunch 

bunch form factors in 

corresponding directions 

contribution of 

coherent effects 

Conventionally it is assumed that the coherent radiation 

is produced at wavelengths equal and longer than the 

electron bunch length 



Coherent effects (Gaussian bunch) 

Gaussian distribution 

Form factor 

For a relativistic bunch the relative contribution of coherent 

effects for the radiation with 

Transverse form factor is strongly anisotropic 



Coherent effects (non-Gaussian bunch) 

Due to various beam manipulations the bunch shape can be 

highly non-Gaussian 

For non-Gaussian bunches the form factor for the short 

wavelengths may decrease as power-law instead of being 

exponential 



Even for weakly asymmetrical bunch 

radiation is coherent if 

Asymmetric Gaussian bunch 

Example: asymmetric Gaussian bunch 

Form factor: 

, 

N.A.Korkhmazian, L.A.Gevorgian, M.L.Petrosyan, Zhur. Tekh. Fiz. 47 (1977) 1583 



Other non-Gaussian bunches 

Rectangular bunch having exponentially decreasing 

asymmetric tails 

Superposition of two Gaussian functions 



Conclusion 

•We investigate the radiation from an electron bunch of arbitrary 

structure flying over the surface wave excited in plane interface 

between media with different dielectric constants  

 

•Radiation from a bunch can be partially coherent in the range of 

wavelengths much shorter than the characteristic longitudinal size 

of the bunch  

 

•Main contribution to the radiation intensity comes from the parts of 

the bunch with large derivatives of the distribution function  

 

•For short wavelengths the relative contribution of coherent effects 

decreases as a power-law instead of exponentially decreasing 



Quantum creation by surface waves 

Surface wave 

Quantum radiation due to 

the dynamical Casimir effect 

Quantum radiation arises due to the interaction of 

dynamical boundary with the quantum fluctuations 

of the vacuum 

Quantum radiation from surface waves 



Vacuum fluctuations in quantum field theory 

Among the most important consequences of quantum field 

theory is the presence of non-trivial properties of the 

vacuum state 

Vacuum is a state of a quantum field with zero number of 

particles 

00ˆ nParticle number 

operator 

Particle number and field operators do not commute 

0]ˆ,ˆ[ n

In the vacuum state the field fluctuates 

                   Vacuum or zero-point fluctuations 



The Casimir effect as a macroscopic manifestation of the 

vacuum fluctuations 

a

F

Conducting plates 

The Casimir effect (Casimir, 1948): 

Two conducting neutral parallel 

plates in the vacuum attract by the 

force per unit surface 
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The plates modify the spectrum of the electromagnetic field 

vacuum fluctuations            The vacuum energy is changed   
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Vacuum energy in the 

presence of plates 

Vacuum energy in the 

absence of plates 



Dynamical Casimir effect 

Boundaries and boundary conditions are static 

Static Casimir effect 

Geometrical configuration and boundary conditions 

depend on time 

Dynamical Casimir effect  

Manifestations of dynamic behavior 

        Dependence of the force on time 

        Creation of particles from vacuum by a moving   

        boundary 



General problem 

Static boundary S0 

Dynamical boundary S 

Displacement field )(xi

Model: Scalar field with Dirichlet boundary condition 
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Number of radiated quanta 
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Harmonic oscillations of boundary 

Consider 

Spectral-angular density of the number of radiated quanta 
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Spectral density (               ) 0/u

Total number of radiated 

quanta and total energy 



Standing surface wave 

Surface wave excited on the strip  

Number of the radiated quanta per unit time and per unit 

length along the axis y 



Thank you! 


