

D.A. Shkitov, A.P. Potylitsyn, A. Aryshev, J. Urakawa,

TPU, Tomsk, Russia KEK, Tsukuba, Japan

September 2013

Content

- Introduction
- Motivation
- Model assumptions
- Simulation results
- Conclusion and plans

Introduction

There are a few ways to generate intense beams of THz radiation: optically pumped terahertz lasers, photomixing of near-IR lasers, backward-wave oscillators, direct multiplied sources and nonlinear optical processes occurring when an intense laser beam interacts with a material.

Another promising candidate is to generate short, high-brightness THz-frequency coherent radiation pulses using a micro-train electron beam (THz sequence of a several fs-length electron bunches) of a compact accelerator.

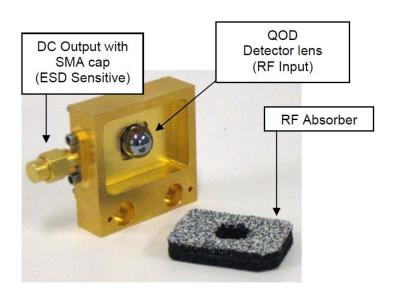
Accelerator

LUCX accelerator facility

Parameters:

Electron energy
Micro-bunch length
Transverse size (x, y)
Micro-bunch spacing
Normalized emittance (x, y)
Micro-bunch charge
Number of micro-bunches
Electron energy spread

THz ch	amber	CDR	cham	ber
8.25	MeV	3	0 MeV	J
100	fs	200	-300	fs
	200 բ	ım		
	0 - 10	ps		
	5π mm×n	nrad		
	100 p	С		
	2 - 1	. 6		
	~1%			

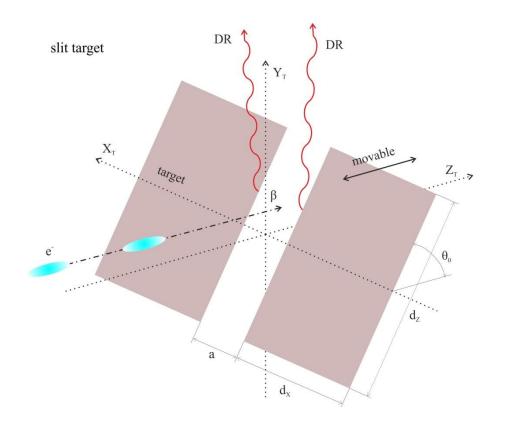

Parameters:

Output window (polished)
Diameter
Thickness

<u>THz</u> chamb	<u>per</u>
crystal quartz,	/sapphire
100/155	mm

CDR chamber
fused silica
50 mm
10 mm

Detector


Quasi-optical Detector

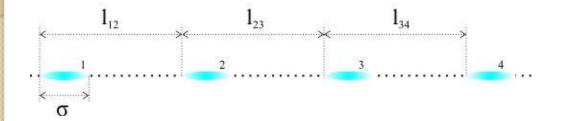
Parameters:			
Detector	QOD (quasi-optical detector) VDI		
Spectral range	0.1 -> 1.0 THZ*		
Sensitivity	500 V/W		
Aperture	10 mm		
Minimum distance from output window	60 cm		
Maximum distance	a few meters		

^{*} 0.1 - > 1.0 THz correspond to 3 - < 0.3 mm.

Double DR target

When bunched electron beam passes through the double DR target it emits coherent radiation with intensity being dependent on double target parts relative position (interferogram).

This interferogram can be measured when one part of the target moves relative to another one along the beam trajectory.


Assumptions

The simulations was performed with several assumptions. There are following:

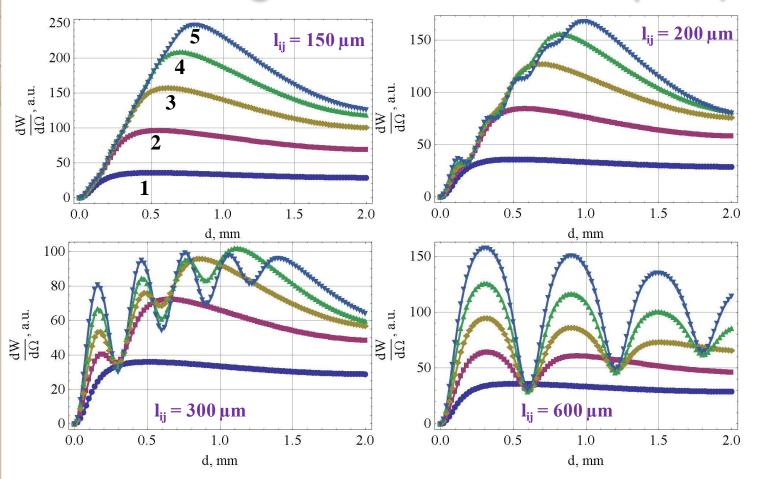
- we do not take into account detector effect (spectral sensitivity);
- we do not take into account influence of output window (glass transmission);
- calculation is done for one point on detector (0,0);
- we use pseudophoton approach;
- EM field have only transverse component;
- we take into account only longitudinal size of bunches;

Train structure

train

- l_{ij} distance between bunch "i" and "j"
- σ micro-bunch length
- β speed of electrons
- θ_0 angle between beam trajectory and target

Simulation

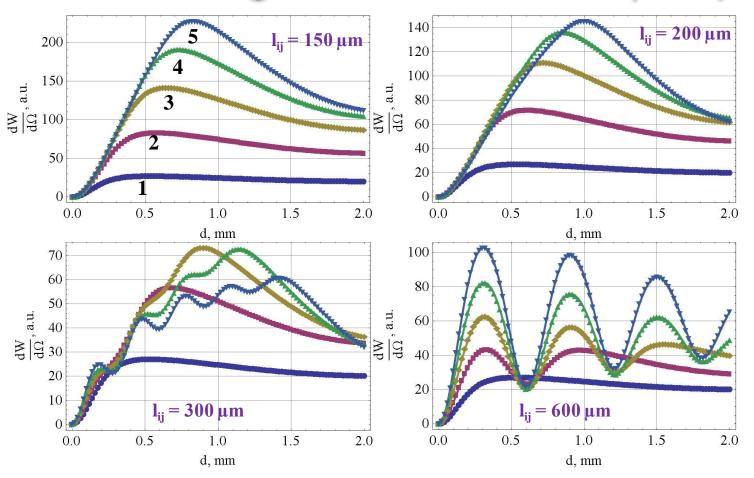

Parameters:	<u>THz chamber</u>	CDR chamber	
Electron energy	8.25 MeV	30 MeV	
	(γ≈16)	(γ≈58.7)	
Micro-bunch length	100 fs	300 fs	
	(30 µm)	(90 µm)	
Micro-bunch spacing	1 ps		
	(300 µm)		
Radiation wavelength range	0.03 – 3.0 mm (step 5 μm)		
Target slit width	2 mm		
Target-to-detector distance	700 mm	700 mm	
	far-field zone	near-field zone	
Target dimensions (z, x)	46×20	46×20 mm ²	
Target tilt angle	π/4		
Point of detector	(0,0)		
Interferograms step	20 μm		

Note:

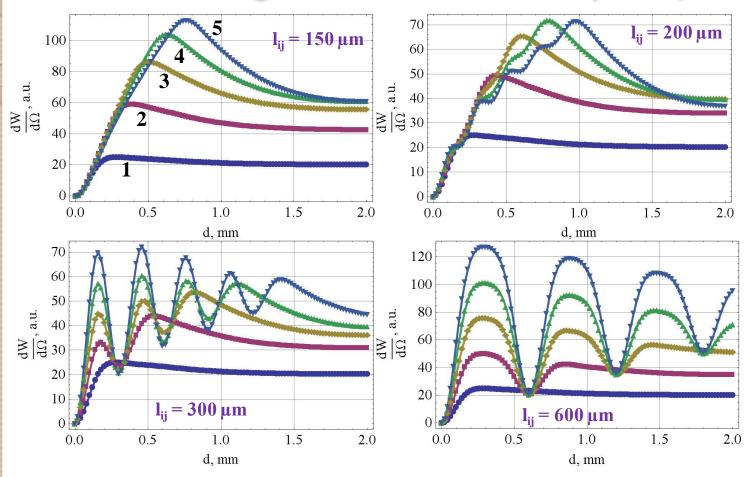
$$\gamma\lambda = 16*3 \text{ mm} = 48 \text{ mm}$$
$$\gamma^2\lambda = 16^2*3 \text{ mm} = 768 \text{ mm}$$

$$\gamma\lambda = 58.7*3 \text{ mm} \approx 176 \text{ mm}$$

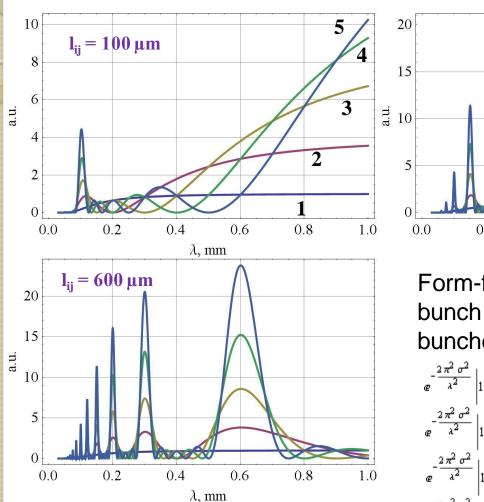
$$\gamma^2\lambda = 58.7^2*3 \text{ mm} \approx 10300 \text{ mm}$$

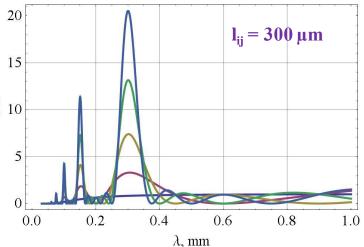

Interferograms 8.25 MeV|30 µm

4 picture of interferograms for different micro-bunch spacing \mathbf{I}_{ij} with number of bunches per train from 1 to 5


Number of peaks in the interferograms correspond to the number of bunches in micro-train

Interferograms 8.25 MeV|90 µm


4 picture of interferograms for different micro-bunch spacing I_{ii} with number of bunches per train from 1 to 5


Interferograms 30 MeV|90 µm

4 picture of interferograms for different micro-bunch spacing I_{ii} with number of bunches per train from 1 to 5

Form-factor 8.25 MeV|30 µm

Form-factor for different microbunch spacing I_{ij} with number of bunches per train from 1 to 5

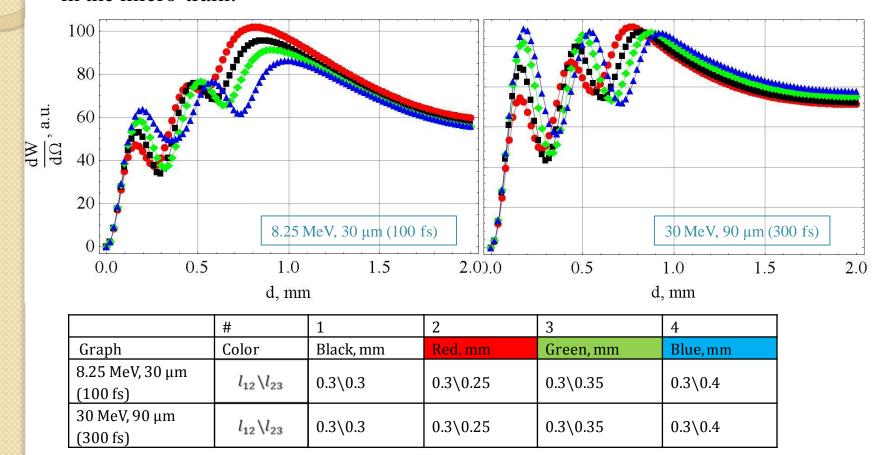

$$e^{-\frac{2\pi^{2}\sigma^{2}}{\lambda^{2}}}\left|_{1+e^{\frac{2t\pi l_{0}}{\beta\lambda}}}\right|^{2} \qquad \qquad 2$$

$$e^{-\frac{2\pi^{2}\sigma^{2}}{\lambda^{2}}}\left|_{1+e^{\frac{2t\pi l_{0}}{\beta\lambda}}+e^{\frac{4t\pi l_{0}}{\beta\lambda}}}\right|^{2} \qquad \qquad 3$$

$$e^{-\frac{2\pi^{2}\sigma^{2}}{\lambda^{2}}}\left|_{1+e^{\frac{2t\pi l_{0}}{\beta\lambda}}+e^{\frac{4t\pi l_{0}}{\beta\lambda}}+e^{\frac{6t\pi l_{0}}{\beta\lambda}}}\right|^{2} \qquad \qquad 4$$

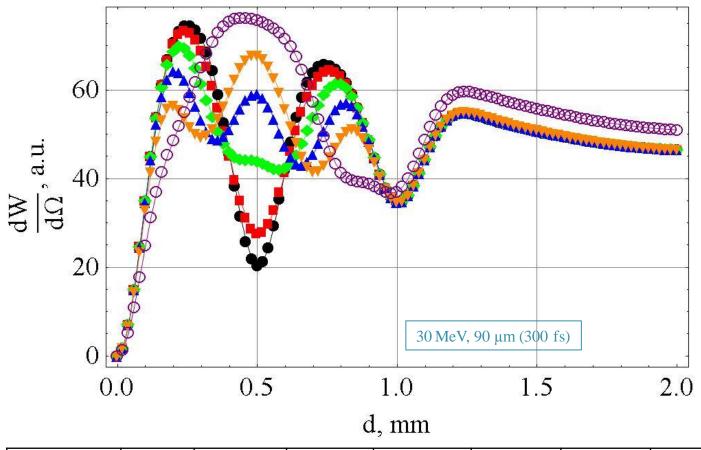
$$e^{-\frac{2\pi^{2}\sigma^{2}}{\lambda^{2}}}\left|_{1+e^{\frac{2t\pi l_{0}}{\beta\lambda}}+e^{\frac{4t\pi l_{0}}{\beta\lambda}}+e^{\frac{6t\pi l_{0}}{\beta\lambda}}+e^{\frac{8t\pi l_{0}}{\beta\lambda}}}\right|^{2} \qquad \qquad 5$$

Form-factor 30 MeV|90 µm



 λ , mm

1.0


Interferograms (spacing)

Following interferograms simulated for different spacing between 3 bunches in the micro-train:

For reverse values of spacing the interferograms shapes are the same

Interferograms (spacing_2)

	#	1	2	3	4	5	6
Graph	Color	Black, mm	Red, mm	Green, mm	Blue, mm	Orange	Purple
30 MeV, 90 μm (300 fs)	$l_{12} \backslash l_{23}$	0.5\0.5	0.45\0.55	0.4\0.6	0.35\0.65	0.3\0.7	0.2\0.8

Conclusion and plans

- Development of a robust and non-invasive micro-train bunch spacing diagnostics obtains vast importance.
- Double diffraction radiation target interferometry can be used for non-invasive determination of submicron bunch spacing (1. we can distinctly to observe the number of bunches in microtrain through the interferograms shapes 2. we see that the average meaning of bunch spacing in micro-train is came out from the 1st minimum of interferogram)
- We need to carry out additional investigation for better understanding the process of interaction micro-train with double DR target interferometer.
- Cross-check measurements with deflecting cavity and THz Michelson interferometer at KEK, LUCX facility can be considered as an important step.

Thank you

for your attention!