Flavor Physics: Past, Present, Future

Nobel Symposium on LHC Results

Krusenberg herrgård 14 May 2013

Yossi Nir (Weizmann Institute of Science)

Flavor Physics: Past, Present, Future

Flavor Physics

Plan of Talk

- 1. Past: What have we learned?
 - Lessons from the B-factories
- 2. Present: Open questions
 - The NP flavor puzzle
 - The SM flavor puzzle
- 3. Future: What will we learn?
 - Collider \Leftrightarrow Flavor interplay
 - The flavor of h

Flavor Physics

What have we learned?

Flavor Physics: Past, Present, Future

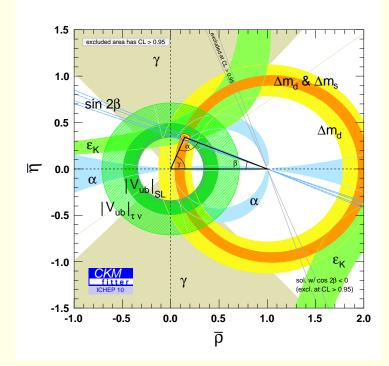
3/31

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$

A brief history of CPV

- 1964 2000
 - $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}; \ \mathcal{R}e(\varepsilon'/\varepsilon) = (1.65 \pm 0.26) \times 10^{-3}$
- $2000 2013, 5\sigma$
 - $S_{\psi K_S} = +0.68 \pm 0.02$
 - $S_{\phi K_S} = +0.74 \pm 0.12, \ S_{\eta' K_S} = +0.59 \pm 0.07, \ S_{f K_S} = +0.69 \pm 0.11$
 - $S_{K^+K^-K_S} = +0.68 \pm 0.10$
 - $S_{\pi^+\pi^-} = -0.65 \pm 0.07, C_{\pi^+\pi^-} = -0.36 \pm 0.06$
 - $S_{\psi\pi^0} = -0.93 \pm 0.15, S_{DD} = -0.98 \pm 0.17, S_{D^*D^*} = -0.77 \pm 0.10$
 - $\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.083 \pm 0.005$
 - $\mathcal{A}_{D_+K^{\pm}} = +0.19 \pm 0.03$
 - $\mathcal{A}_{B_S \to K^- \pi^+} = +0.27 \pm 0.04$


Testing CKM – Take I

- Assume: CKM matrix is the only source of FV and CPV \implies Four CKM parameters: λ, A, ρ, η
- λ known from $K \to \pi \ell \nu$ A known from $b \to c \ell \nu$
- Many observables are $f(\rho, \eta)$:

$$-b \rightarrow u\ell\nu \implies \propto |V_{ub}/V_{cb}|^2 \propto \rho^2 + \eta^2$$

$$-\Delta m_{B_d}/\Delta m_{B_s} \implies \propto |V_{td}/V_{ts}|^2 \propto (1-\rho)^2 + \eta^2$$

$$-S_{\psi K_S} \implies \frac{2\eta(1-\rho)}{(1-\rho)^2+\eta^2}$$

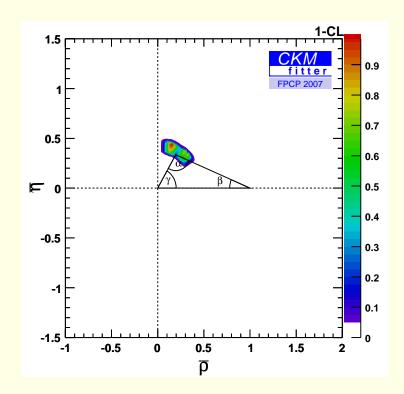
$$-S_{\rho\rho}(\alpha)$$

$$-\mathcal{A}_{DK}(\gamma)$$

 $-\epsilon_K$

The B-factories Plot

CKMFitter

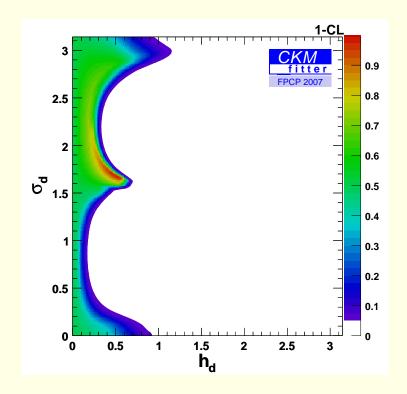

Very likely, the CKM mechanism dominates FV and CPV

Testing CKM - take II

- Assume: New Physics in leading tree decays negligible
- Allow arbitrary new physics in loop processes
- Consider only tree decays and $B^0 \overline{B}^0$ mixing
- Define $h_d e^{2i\sigma_d} = A^{\text{NP}}(B^0 \to \overline{B})/A^{\text{SM}}(B^0 \to \overline{B})$ \implies Four parameters: ρ, η (CKM), h_d, σ_d (NP)
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , \mathcal{A}_{SL}^d
- Fit to $\eta, \rho, h_d, \sigma_d$
- Find whether $\eta = 0$ is allowed If not \implies The KM mechanism is at work
- Find whether $h_d \gg 1$ is allowed If not \implies The KM mechanism is dominant

What have we learned?

 $\underline{\eta \neq 0?}$



• The KM mechanism is at work

Flavor Physics: Past, Present, Future

What have we learned?

 $h_d \ll 1$?

- The KM mechanism dominates CP violation
- The CKM mechanism is a major player in flavor violation

Flavor Physics: Past, Present, Future

Intermediate summary I

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is the dominant source of the CP violation observed in meson decays
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- CP violation in D, B_s may still hold surprises
- No evidence for corrections to CKM
- NP contributions to the observed FCNC are at most comparable to the CKM contributions
 (s ↔ d, c ↔ u, b ↔ d, b ↔ s)

Flavor Physics

The SM = Low energy effective theory

- 1. Gravity $\implies \Lambda_{\text{Planck}} \sim 10^{19} \text{ GeV}$
- 2. $m_{\nu} \neq 0 \Longrightarrow \Lambda_{\text{Seesaw}} \leq 10^{15} \text{ GeV}$
- 3. m_H^2 -fine tuning $\Longrightarrow \Lambda_{\text{top-partners}} \sim \text{TeV}$ Dark matter $\Longrightarrow \Lambda_{\text{wimp}} \sim \text{TeV}$

- The SM = Low energy effective theory
- Must write non-renormalizable terms suppressed by $\Lambda_{\rm NP}^{d-4}$

•
$$\mathcal{L}_{d=5} = \frac{y_{ij}^{\nu}}{\Lambda_{\text{seesaw}}} L_i L_j \phi \phi$$

• $\mathcal{L}_{d=6}$ contains many flavor changing operators

New Physics

• The effects of new physics at a high energy scale Λ_{NP} can be presented as higher dimension operators

- For example, we expect the following dimension-six operators: $\frac{z_{sd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu s_L)^2 + \frac{z_{cu}}{\Lambda_{\rm NP}^2} (\overline{c_L} \gamma_\mu u_L)^2 + \frac{z_{bd}}{\Lambda_{\rm NP}^2} (\overline{d_L} \gamma_\mu b_L)^2 + \frac{z_{bs}}{\Lambda_{\rm NP}^2} (\overline{s_L} \gamma_\mu b_L)^2$
- New contribution to neutral meson mixing, *e.g.* $\frac{\Delta m_B}{m_B} \sim \frac{f_B^2}{3} \times \frac{|z_{bd}|}{\Lambda_{\text{VD}}^2}$
- Generic flavor structure $\equiv z_{ij} \sim 1$ or, perhaps, loop factor

Some data

$\Delta m_K/m_K$	7.0×10^{-15}
$\Delta m_D/m_D$	8.7×10^{-15}
$\Delta m_B/m_B$	6.3×10^{-14}
$\Delta m_{B_s}/m_{B_s}$	2.1×10^{-12}
ϵ_K	2.3×10^{-3}
$A_{\Gamma}/y_{ m CP}$	≤ 0.2
$S_{\psi K_S}$	$+0.68\pm0.02$
$S_{\psi\phi}$	-0.04 ± 0.09

High Scale?

• For $z_{ij} \sim 1$	(and $\mathcal{I}m(z_{ij}) \sim 1$):
-----------------------	---------------------------------------

Mixing	$\Lambda_{ m NP}^{ m CPC}\gtrsim$	$\Lambda_{ m NP}^{ m CPV}\gtrsim$
$K - \overline{K}$	$1000 { m TeV}$	$20000 { m TeV}$
$D - \overline{D}$	$1000 { m TeV}$	$3000 { m ~TeV}$
$B - \overline{B}$	$400 { m TeV}$	$800 { m TeV}$
$B_s - \overline{B_s}$	$70 { m TeV}$	$200 { m ~TeV}$

High Scale?

• For $z_{ij} \sim 1$ (and $\mathcal{I}m(z_{ij}) \sim 1$):

Mixing	$\Lambda_{ m NP}^{ m CPC}\gtrsim$	$\Lambda_{ m NP}^{ m CPV}\gtrsim$
$K - \overline{K}$	$1000 { m TeV}$	$20000 {\rm ~TeV}$
$D - \overline{D}$	$1000 { m TeV}$	$3000 { m ~TeV}$
$B - \overline{B}$	$400 { m TeV}$	$800 { m TeV}$
$B_s - \overline{B_s}$	$70 { m TeV}$	$200 { m ~TeV}$

- Did we misinterpret the Higgs fine tuning problem?
- Did we misinterpret the dark matter puzzle?

Small (hierarchical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV$:

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B - \overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-5}

Small (hierarchical?) flavor parameters?

• For $\Lambda_{\rm NP} \sim 1 \ TeV$:

Mixing	$ z_{ij} \lesssim$	$\mathcal{I}m(z_{ij}) \lesssim$
$K - \overline{K}$	8×10^{-7}	6×10^{-9}
$D - \overline{D}$	5×10^{-7}	1×10^{-7}
$B-\overline{B}$	5×10^{-6}	1×10^{-6}
$B_s - \overline{B_s}$	2×10^{-4}	2×10^{-5}

- The flavor structure of NP@TeV must be highly non-generic Degeneracies/Alignment
- How? Why? = The NP flavor puzzle

Flavor Physics

The SM flavor puzzle

Smallness and Hierarchy

$$\begin{array}{cccc} Y_t \sim 1, & Y_c \sim 10^{-2}, & Y_u \sim 10^{-5} \\ Y_b \sim 10^{-2}, & Y_s \sim 10^{-3}, & Y_d \sim 10^{-4} \\ Y_\tau \sim 10^{-2}, & Y_\mu \sim 10^{-3}, & Y_e \sim 10^{-6} \\ V_{us} |\sim 0.2, & |V_{cb}| \sim 0.04, & |V_{ub}| \sim 0.004, & \delta_{\mathrm{KM}} \sim 1 \end{array}$$

- For comparison: $g_s \sim 1$, $g \sim 0.6$, $g' \sim 0.3$, $\lambda \sim 0.1$
- SM flavor parameters have structure: smallness + hierarchy
- Why? = The SM flavor puzzle
 - Approximate symmetry? [Froggatt-Nielsen]
 - Strong dynamics? [Nelson-Strassler]
 - Location in extra dimension? [Arkani-Hamed-Schmaltz]

- ?

$\nu\textsc{-flavor}\xspace$ parameters for an archists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

$\nu\textsc{-flavor}\xspace$ parameters for an archists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

- $|U_{\mu 3}| > \text{any } |V_{ij}|;$
- $|U_{e2}| > \text{any } |V_{ij}|$
- $|U_{e3}| \not\ll |U_{e2}U_{\mu3}|$
- $m_2/m_3 \gtrsim 1/6$ > any m_i/m_j for charged fermions
- So far, neither smallness nor hierarchy
- Anarchy? (Consistent with FN)

$\nu\textsc{-flavor}\xspace$ parameters for tribimaximalists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

$\nu\textsc{-flavor}\xspace$ parameters for tribimaximalists

- $\Delta m_{21}^2 = (7.5 \pm 0.2) \times 10^{-5} \text{ eV}^2$, $|\Delta m_{32}^2| = (2.5 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- $|U_{e2}| = 0.55 \pm 0.01$, $|U_{\mu3}| = 0.64 \pm 0.02$, $|U_{e3}| = 0.15 \pm 0.01$

- $\sqrt{1/3}$ = trimaximal mixing: $|U_{e2}| = \sqrt{1/3} 0.03;$
- $\sqrt{1/2}$ = bimaximal mixing: $|U_{\mu3}| = \sqrt{1/2} 0.06;$
- 0 = bimaximal mixing: $|U_{e3}| = 0 + 0.15$
- Tribimaximal mixing?
- Non-Abelian flavor symmetry? A_4 ?

Structure is in the eye of the beholder

$$|U|_{3\sigma} = \begin{pmatrix} 0.79 - 0.85 & 0.51 - 0.59 & 0.13 - 0.18 \\ 0.20 - 0.54 & 0.42 - 0.73 & 0.58 - 0.81 \\ 0.21 - 0.55 & 0.41 - 0.73 & 0.57 - 0.80 \end{pmatrix}$$

• Tribimaximal-ists:

$$|U|_{\text{TBM}} = \begin{pmatrix} 0.82 & 0.58 & 0\\ 0.41 & 0.58 & 0.71\\ 0.41 & 0.58 & 0.71 \end{pmatrix}$$

• Anarch-ists:

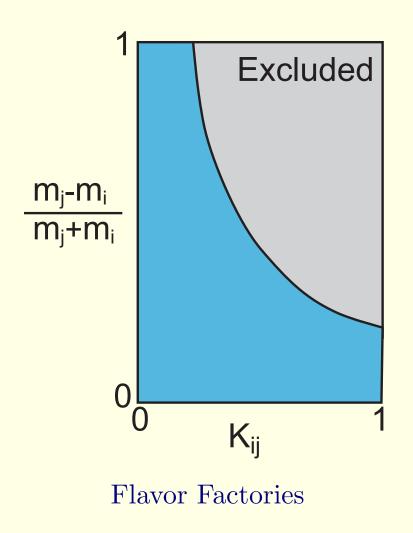
$$|U|_{\text{anarchy}} = \begin{pmatrix} \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \\ \mathcal{O}(0.6) & \mathcal{O}(0.6) & \mathcal{O}(0.6) \end{pmatrix}$$

Intermediate summary II

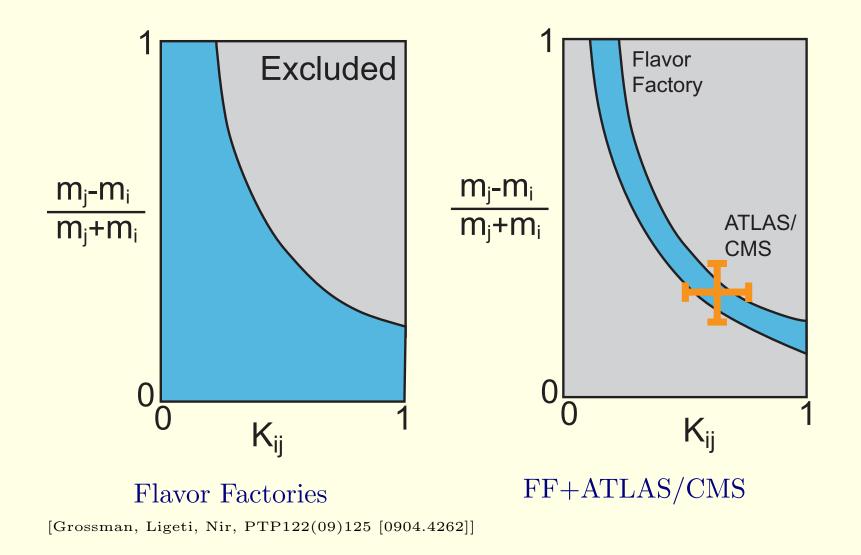
- Why is there smallness and hierarchy in the flavor parameters?
- Is there a relation Dirac/Majorana ⇔ hierarchy/anarchy?
 Is there a relation Dirac/Majorana ⇔ Abelian/non-Abelian?
- How does new physics at TeV suppress its flavor violation? Is the solution related to the previous ones?

Flavor Physics

What will we learn?


$\underline{\textbf{Collider} \Leftrightarrow \textbf{Flavor}}$

ATLAS/CMS and flavor factories give complementary information


- In the absence of NP at ATLAS/CMS: flavor factories will be crucial to find Λ_{NP}
- Consistency between ATLAS/CMS and FF: necessary to understand the NP flavor puzzle
- NP in $c \to u$? $s \to d$? $b \to d$? $b \to s$? $t \to c$? $t \to u$? $\mu \to e$? $\tau \to \mu$? $\tau \to e$?
- $A_{\text{FB}}^{t\bar{t}}$ a wonderful example of collider-flavor interplay [Blum, Hochberg, Nir, JHEP 10 (2011) 124]
- $A_{\rm FB}^{t\bar{t}} \Leftrightarrow \Delta A_{\rm CP}$? An intriguing possibility

[Hochberg, Nir, PRL 108 (2012) 261601]

$\underline{\textbf{Collider} \Leftrightarrow \textbf{Flavor}}$

$\underline{\textbf{Collider} \Leftrightarrow \textbf{Flavor}}$

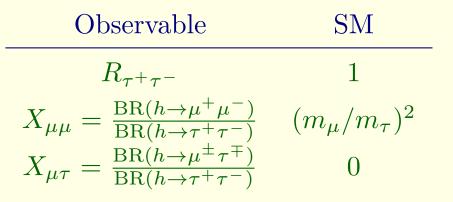
Can we make progress?

- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even anarchical
- The NP flavor puzzle: With ATLAS/CMS we will surely understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM

Can we make progress?

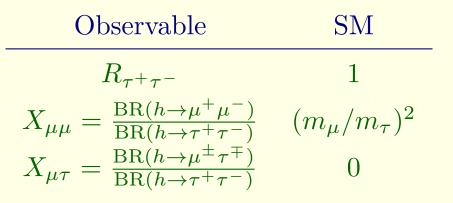
- NP that couples to quarks/leptons \implies New flavor parameters (spectrum, flavor decomposition) that can be measured
- The NP flavor structure could be:
 - MFV
 - Related but not identical to SM
 - Unrelated to SM or even an archical
- The NP flavor puzzle: With ATLAS/CMS we will surely understand how it is solved
- The SM flavor puzzle:
 - Progress possible if structure not MFV but related to SM
- $h \implies$ The "NP" is already here! $Y_{\bar{f}_i f_j}$ are new flavor parameters that can be measured

h at present


Observable	Experiment
$R_{\gamma\gamma}$	1.1 ± 0.2
R_{ZZ^*}	1.1 ± 0.2

•
$$R_f = \frac{\sigma_{\text{prod}} BR(h \to f)}{[\sigma_{\text{prod}} BR(h \to f)]^{SM}}$$

- Indication that $Y_t = \mathcal{O}(1)$
- The beginning of Higgs flavor physics


Flavor Physics: Past, Present, Future

<u>h in the future</u>

- What can we learn from $R_{\tau\tau}$, $X_{\mu\mu}$, $X_{\tau\mu}$?
- Interplay of flavor with electroweak symmetry breaking

<u>h in the future</u>

- What can we learn from $R_{\tau\tau}$, $X_{\mu\mu}$, $X_{\tau\mu}$?
- Interplay of flavor with electroweak symmetry breaking
- ATLAS/CMS: $R_{\tau\tau} \sim 1.0 \pm 0.4$, $R_{\mu\mu} < 9.8$

The flavorful h

Model	$\frac{\sigma_{\rm prod}^{\rm SM}}{\sigma_{\rm prod}} \frac{\Gamma_{\rm tot}}{\Gamma_{\rm tot}^{\rm SM}} R_{\tau^+\tau^-}$	$X_{\mu^+\mu^-}/(m_{\mu}^2/m_{\tau}^2)$	$X_{ au\mu}$
\mathbf{SM}	1	1	0
NFC	$(V_{h\ell}v/v_\ell)^2$	1	0
MSSM	$(\sin lpha / \cos eta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
$2 \mathrm{HDM}^{\mathrm{GMFV}}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0
\mathbf{FN}	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(rac{ U_{23} m_{ au}v}{\Lambda^2})$
GL	9	25/9	$\mathcal{O}(X_{\mu^+\mu^-})$

Measurements of Y_{ij} can exclude/support flavor models

Dery, Efrati, Hochberg, YN, 1302.3229; Dery, Efrati, Hiller, Hochberg, YN, 1304.6727

Intermediate summary III

Measure new flavor parameters:

- Y_t, Y_b, Y_τ
- $BR(h \to \mu\mu)/BR(h \to \tau\tau)$
- $BR(h \to \mu \tau)/BR(h \to \tau \tau)$
- $BR(t \to ch)$

Test solutions of NP/SM flavor puzzles:

- MFV
- FN
- NFC
- • •

Flavor Physics

Questions for the LHC

- What is the mechanism of electroweak symmetry breaking?
- What separates the electroweak scale from the Planck scale?
- What happened at the electroweak phase transition $(10^{-11} \text{ second after the big bang})?$
- What are the dark matter particles?
- How was the baryon asymmetry generated?
- What is the solution of the flavor puzzles?

Flavor Physics: Past, Present, Future

Flavor Physics

Questions for the Symposium

- What will be the best experiments to make progress on flavor?
- What will be the best experiments to make progress on baryogenesis?
- Do we have a serious hint for new physics? $A_{\text{FB}}^{t\bar{t}}? \Delta A_{\text{CP}}^{D}? A_{\text{SL}}^{b}? R(D^{(*)})?$
- Is tribimaximal mixing viable/testable?