

FRAUNHOFER Test-Campaigns & Facilities

(R2E) Mitigation Project: www.cern.ch/r2e

RadWG March 25th 2013

M. Brugger for the R2E Project

@ Fraunhofer test facilities @ Blanket contract @ Typicial test 'life-cycle' @ On-going tests & Cost Example @ Tests in pipeline

Co-60 gamma sources

- MDS Nordion GammaMat TK1000 A/B
- MDS Nordion GammaMat TK100
- X-ray sources
 - Febetron 705 (pulsed)
 - Comet MXR-451 (continuous)
 - **Neutron generators**
 - Thermo Electron D-711
 - EADS Sodern Genie 16C

- Pulsed laser SEE test system
 - Lumera STACCATO
 - CryLas DSS1064-Q1
- Sun simulator
 - Oriel LS0911

External facilities

- Proton-irradiation at FZ Jülich
- Relativistic heavy ions at GSI Darmstadt (currently limited availability)

External Co-60 sources

Co-60 Source (TID Tests)

- Typical activity:
 - 2×10¹³ Bq (500 Ci)
- Maximum dose rate:
 - ~3 Gy/s (300 rad/s)
- Maximum dose (very small samples):
 - 1 MGy (100 Mrad) in 4-6 days
- Temperature range:
 - -55°C to +150°C
 - Dosimetry:
 - Calibrated ionisation chambers and TLDs (LiF)
- Large test volume (~1 m³)

Co-60 Source (TID Tests)

- Bunker layout with cable feeds, remote control to test equipment possible, etc,...
- Whole irradiation chamber thermally stabilized ±0.2°C
- Larger test volume resulting in large variation of dose rate
- Exclusive concrete bunker without interference with other irradiations
- Measurement equipment close in precision climate chamber

🕅 Co-60 High-Dose Tests (passive) 🎉

- @ BGS (Wiehl) close to Fraunhofer
- Goal: tests in the MGy range (& large volume)
- Only passive radiation tests possible (some possibilities for 'small' samples)

Neutron Generator (DD Tests)

- Neutron generation via fusion reaction T(d,n)⁴He $E_n \cong 14 \text{ MeV}$ D(d,n)³He $E_n \cong 2.6 \text{ MeV}$
- 14 MeV: Source particles < 4×10¹⁰ n/s in 4π Fluence of 10¹³ n/cm² after several hours
- 2.5 MeV: About a factor of 100 less
- 14 MeV-n in Si are twice effective as 1 MeV-n
- Fluence and dose measured with activation foils and fission chambers

- Observation Provide the second stress of the sec
- Image Time and man-power constraints are a frequent issue for equipment groups
- Individual contracts are lengthy and total volume exceeds 200kCHF/y envelope
- Proposal of blanket contract with Fraunhofer (maximum volume of 700kEUR/3y) accepted by Finance Committee (March 2013)
- **©** Contract in iteration with Fraunhofer on-going

- Qualification tests of optical fibers (production testing) [EN/EL]
- RadFet calibration campaign [EN/STI]
- Q Currently two combined campaigns (active + passive)

Measurement	Туре	Campaign	Dose Levels Dose Rate		Volume	#ofSteps	Total Cost [EUR]
Piezo Sensors	Active	Fraunhofer 1	<1.3 MGy	0.3 Gy/s (Air)	-	continuous	
Survey Sensors	Active	Fraunhofer 1	<0.5 Mgy	0.1 Gy/s (Air)	-	continuous	85000
Optical Sensor Head	Active	Fraunhofer 1	<0.5 Mgy	0.1 Gy/s (Air)	-	continuous	
Piezo Sensors	Passive	Fraunhofer 2	0/1/5/10MGy	9 KGy/h (H2O)	small	3	
High-Level Dosimeters	Passive	Fraunhofer 2	0/0.1/0.3/1/3/10MGy	9 KGy/h (H2O)	medium	5	
Optical Sensor Head & Feed Through	Passive	Fraunhofer 2	3MGy	9 KGy/h (H2O)	medium	1	
Magnet material samples	Passive	Fraunhofer 2	0.1/1/5/10	9 KGy/h (H2O)	large	3	49000
Survey Sensors (2nd model)	Passive	Fraunhofer 2	0.1/0.3/1/5	9 KGy/h (H2O)	small	4	
Additional1 (e.g, polymers)?	Passive	Fraunhofer 2		9 KGy/h (H2O)	medium		
Additional1 (e.g, cable feedthroughs)?	Passive	Fraunhofer 2	0.1/0.3/1	9 KGy/h (H2O)	large	3	

- @ Aim: combine as many tests as possible
- Output New contract:
 - @ will bring costs further down
 - ensure the availability of the facilities and Fraunhofer

Upcoming Campaigns

- **RadFET** additional measurements under biased conditions [EN/STI] (G. Spiezia)
- **RadMon** components, e.g. ADC (full box) [EN/STI] (G. Spiezia)
- LED safety lights up to some 100kGy (active or passive) [EN/EL] (J.M. Foray)
- □ IT/Fire Beacons up to 100kGy (ideally active) [IT/CS] (A. Pascal, A.G. Molero)
- □ Fire detection/alarm system: diode active, functional test on switch [GS/ASE] (M. Dole)
- Polymers & Resin samples to high doses (10MGy), partly under cryogenic conditions [TE/MSC] -Insulation samples + Cryo (E. Fornasiere)
- □ Flexible pipes (passive up to some MGy) [TE/MSC] Magnet hoases/feeds (D. Schoerling)
- **Small components** for collimation (motors, switches) -> Passive to several MGy [EN/STI] (A. Masi)
- LT1084 regulator active measurement up to ~1kGy [TE/MPE] (R. Denz, J. Steckert)
- □ Components used for new power converter design (several) up to few hundred Gy (to be decided if active or passive) [TE/EPC] (Y. Thurel, A. Dinius, S. Uznanski)
- Survey equipment (passive only) -> for cable MGy to be clarified, additional: motor/gearbox optional [BE/MPE] (M. Sosin)
- **Humidity sensor**: [EN/CV] (R. D. Ecclestone)
- □ **labeling** verification -> interested? [EN/EL] (C. Crommelinck)
- □ components interesting for EAirrad [EN/STI] (J. Mekki, M. Brugger)
- possible requirement for **BPM components** for xCheck analysis ongoing [BE/BI] (G.J. Focker)
- **vacuum instrumentation** if cross-check on 'new' equipment is required [TE/VSC] (G. Pigny)
- **RF equipment** to be discussed in context of JPARC tests [BE/RF] (M. Paoluzzi)

Upcoming Campaigns

- First specification documents received
 - Iteration on few points required
 - Missing ones get 'urgent'
- Will create dedicated website (sub-site of RadWG)
- Trip to Fraunhofer scheduled for April 10th (input before!)

	Component/System	Contact (Group)	Target Dose	Specification	Defined	Comments	
	componenty system	contact (Group)	(+Rate)	Document Slo		comments	
Active	RadFets	G. Spiezie (EN/STI)	varying	ready		additional measurements	
	RadMon components	G. Spiezie (EN/STI)	1kGy (IDR)	in work		particular interest on ADC life-time	
	IT/Fire Beacons	A. Molero (IT/CS)	100kGy	ready		open discussion for specification document	
	LED safety lights	J.M. Foray (EN/EL)	100kGy			setup ready	
	LT1084 regulator	R. Denz (TE/MPE)	1kGy (IDR)			clarifying possible ELDRS	
	Humidity sensor	R. Ecclestone (EN/CV)	100kGy			setup ready	
	BPM components	G. Focker (BE/BI)	10kGy (tbc)				
	Vacuum instrumentation	G. Pigny (TE/VSC)					
	Power-converter components	S. Uznanski (TE/EPC)	0.5-1kGy	ready		first iteration on selection	
	Fire alarm system	M. Dole (GS/ASE)	100kGy			only the diode active	
Special	polymer & resin samples	E. Fornasiere (TE/MSC)	10MGy (steps)			77K same samples as current campaign	
Passive	flexible pipes	D. Schoerling (TE/MSC)	10MGy (steps)				
	collimation components	A. Masi (EN/STI)	10MGy (steps)	ready		various components	
	survey equipment	M. Sosin (BE/MPE)	1-10MGy			cable, motor, gearbox,	
	EAirrad equipment	J. Mekki (EN/STI)	1MGy			cables, motors, tbd	
	RF equipment	M. Paoluzzi (BE/RF)	10-100kGy			to be confirmed	
	Fire alarm system	M. Dole (GS/ASE)	100kGy			call point (check before after only)	