Muon Collider and the Top Quark Mass

Tao Han University of Pittsburgh

Snowmass Top Quark Working Group (March 13, 2013)

A Muon? "Who ordered that?" (I. I. Rabi) The "heavy electron" μ^{\pm} has helped us a great deal in understanding particle physics. A Muon? "Who ordered that?" (I. I. Rabi) The "heavy electron" μ^{\pm} has helped us a great deal in understanding particle physics.

Although sharing the same EW interactions, it isn't another electron:

 $m_{\mu} \approx 207 \ m_{e}$ $au(\mu \rightarrow e \overline{\nu}_{e} \nu_{\mu}) \approx 2.2 \ \mu s$ $c\tau \approx 660 \ m.$ A Muon? "Who ordered that?" (I. I. Rabi) The "heavy electron" μ^{\pm} has helped us a great deal in understanding particle physics.

Although sharing the same EW interactions, it isn't another electron:

 $m_{\mu} \approx 207 \ m_{e}$ $au(\mu \rightarrow e \overline{\nu}_{e} \nu_{\mu}) \approx 2.2 \ \mu s$ $c \tau \approx 660 \ m.$

It is these features: heavy mass, short lifetime that dictate the physics.

Advantages of a Muon Collider

(1). Less radiative energy loss

$$\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu}\right)^4$$

Advantages of a Muon Collider

(1). Less radiative energy loss

$$\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu}\right)^4$$

which allows a higher energy and much smaller machine:*

Advantages of a Muon Collider (1). Less radiative energy loss $\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu}\right)^4$ which allows a higher energy and much smaller machine:* РР (1.5 TeV) ILC e^+e^- (.5 TeV) CLIC e^+e^- (3TeV) FNAL site Mu-Mu (4 TeV) 10 km

and a better beam-energy resolution: $\delta p/p \sim 0.1\% - 0.003\%$.

*Palmer

Advantages of a Muon Collider (1). Less radiative energy loss $\Delta E \sim \gamma^4 = (\frac{E}{m_\mu})^4$ which allows a higher energy and much smaller machine:* РР (1.5 TeV) ILC e^+e^- (.5 TeV) CLIC e^+e^- (3TeV) 10 km

and a better beam-energy resolution: $\delta p/p \sim 0.1\% - 0.003\%$.

(2). Some natural beam-polarization via $\pi^- \rightarrow \mu^- \ \overline{\nu}$.

*Palmer

"Never play with an unstable thing!"

"Never play with an unstable thing!"

(1). Luminosity: Beam cooling on transverse momentum

"Never play with an unstable thing!"

- (1). Luminosity: Beam cooling on transverse momentum
- (2). Detector backgrounds: Muon decay and re-scattering

"Never play with an unstable thing!"

- (1). Luminosity: Beam cooling on transverse momentum
- (2). Detector backgrounds: Muon decay and re-scattering
- (3). Neutrino hazard: When E_{cm} reaching Multi-TeV.

[†]Barger, Berger, Gunion, Han, (Phys. Rep. 1995)

A Higgs Factory

The s-channel resonant production: $\sigma(\mu^+\mu^- \to H, A \to X) = \frac{4\pi\Gamma(H, A \to \mu^+\mu^-) \Gamma(H, A \to X)}{(s - M_H^2)^2 + \Gamma_H^2 M_H^2}$ $\overline{\sigma}(s) = \int d\sqrt{s} \ \sigma(\mu^+\mu^- \to H, A \to X) \ \frac{dL}{d\sqrt{s}}$ $\propto \begin{cases} \Gamma_h^2 B / [(s - m_h^2)^2 + \Gamma_h^2 m_h^2] & (\Delta \ll \Gamma_h), \\ B \exp[\frac{-(m_H - \sqrt{s})^2}{2\Delta^2}](\frac{\Gamma_h}{\Delta})/m_h^2 & (\Delta \gg \Gamma_h). \end{cases}$

A Higgs Factory

Energy Frontier: $E_{cm} \sim 3 - 6$ **TeV**

(1). At LHC, h_{SM} fully covered, but H, A, H^{\pm} may not. At $\sqrt{s} = 14$ GeV, still a large hole, especially $M_{H,A} > 500$ GeV:[§]

Significance contours for SUSY Higgses

Regions of the MSSM parameter space (m_A , $tg\beta$) explorable through various SUSY Higgs channels

- 5σ significance contours
- two-loop / RGE-improved radiative corrections

• $m_{top} = 175 \text{ GeV}, m_{SUSY} = 1 \text{ TeV}, \text{ no stop mixing };$

[§]Denegri

(2). At LHC, heavy EW pairs are difficult to search for $\mu^+\mu^- \rightarrow H_1H_2, \ \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

IF no help from colored states $\tilde{g} \to q \tilde{q} \to q q' \; \tilde{\chi}^{0,\pm} \; ...$

(2). At LHC, heavy EW pairs are difficult to search for $\mu^+\mu^- \rightarrow H_1H_2, \ \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

IF no help from colored states $\tilde{g} \to q \tilde{q} \to q q' \ \tilde{\chi}^{0,\pm}$...

At lepton colliders, pair production rather robust:

(2). At LHC, heavy EW pairs are difficult to search for $\mu^+\mu^- \rightarrow H_1H_2, \ \tilde{H}^+\tilde{H}^-, \ \tilde{H}^0\tilde{H}^0, \ \tilde{\ell}\tilde{\ell}.$

IF no help from colored states $\tilde{g} \to q \tilde{q} \to q q' \ \tilde{\chi}^{0,\pm}$...

At lepton colliders, pair production rather robust:

Once crossing the pair threshold, observation straightforward. (rather model-independent, like in Two-Higgs Doublet model etc.)

Recent meeting at Telluride, CO, *Muon Collider 2011*: http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

- (1) Higgs, scalar resonances
- (2) Z' or alike

- (1) Higgs, scalar resonances
- (2) Z' or alike
- (3) Pair production for SUSY and BSM

- (1) Higgs, scalar resonances
- (2) Z' or alike
- (3) Pair production for SUSY and BSM
- (4) Missing energy, DM connection

- (1) Higgs, scalar resonances
- (2) Z' or alike
- (3) Pair production for SUSY and BSM
- (4) Missing energy, DM connection
- (5) WW fusion, strong EW sector

- (1) Higgs, scalar resonances
- (2) Z' or alike
- (3) Pair production for SUSY and BSM
- (4) Missing energy, DM connection
- (5) WW fusion, strong EW sector
- (6) Contact interactions

Top Quark Mass near Threshold

The desirable relative precision to reach: $\Delta M_W/\Delta m_t \sim 1/140.$

Top Quark Mass near Threshold

The desirable relative precision to reach: $\Delta M_W/\Delta m_t \sim 1/140.$

"Precision W and t mass determinations at a muon collider (V. Barger, M.S. Berger, J.F. Gunion, TH)

Phys. Rev. D56 (1997) 1714-1722; hep-ph/9702334.

Top Quark Mass near Threshold

The desirable relative precision to reach: $\Delta M_W/\Delta m_t \sim 1/140.$

"Precision W and t mass determinations at a muon collider (V. Barger, M.S. Berger, J.F. Gunion, TH)

Phys. Rev. D56 (1997) 1714-1722; hep-ph/9702334.

Sensitive to m_t , $\Gamma_t(V_{tb})$, α_s and weakly m_h .

[¶]Penin's talk.

Penin's summary:

Top precision measurements from threshold scan

✓ Top quark mass

total uncertainty $\sim 100~{\rm MeV}$ \$\sigma>\$ beats direct reconstruction

✓ Top quark width

total uncertainty $\sim 34~{\rm MeV}$

✓ Top quark vector couplings total uncertainty $\sim 3\%$

★ Top quark Higgs coupling (from Yukawa potential) factor 2 uncertainty is cannot compete with Higgs production

A. Penin, U of A

Snowmass 2013

Penin's summary:

Top precision measurements from threshold scan

✓ Top quark mass

total uncertainty $\sim 100~{\rm MeV}$ rspace > beats direct reconstruction

✓ Top quark width

total uncertainty $\sim 34~{\rm MeV}$

✓ Top quark vector couplings total uncertainty $\sim 3\%$

X Top quark Higgs coupling (from Yukawa potential)

factor 2 uncertainty 🖒 cannot compete with Higgs production

Snowmass 2013

A. Penin, U of A

LEP2 LHC NLC $\mu^+\mu^-$ Tevatron \mathcal{L} (fb⁻¹) 0.12210 10 5010 100 ΔM_W (MeV) 144 34 35201520 20 6 $\Delta m_t \; (\text{GeV})$ 220.20.2 0.07 4 _ _

Table II: Comparison for the achievable precision in M_W and m_t measurement at different

future colliders.

Precision plot: M_W versus m_t :

Take home messages

Take home messages

(1) A muon collider has unique features:Higgs factory at resonance.Lepton collider energy frontier.

Take home messages

(1) A muon collider has unique features:Higgs factory at resonance.Lepton collider energy frontier.

(2) A muon collider is NOT a competitor for ILC. The latter is mature and ready to go. (1) A muon collider has unique features:Higgs factory at resonance.Lepton collider energy frontier.

(2) A muon collider is NOT a competitor for ILC. The latter is mature and ready to go.

(3) A muon collider could be our future.It will be (a lot) smaller, and possibly cheaper.(if technically feasible.)

Future Energy Frontier: Comparison							
Representative Physics Reach:							
	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo		
LHC	\checkmark		$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$		
$E_{qq} pprox 1.5 - 3 \; { m TeV}$	partial	partial	non-resonance?		missing mass?		
300 fb ⁻¹				ΔL	CP-V ?		
CLIC	$\sqrt{}$			\checkmark			
$(1-2) imes 10^{34}$	H potential			e flavor	CP-V		
μ -Collider	$\sqrt{\sqrt{\sqrt{1}}}$		\checkmark	\checkmark	\checkmark		
	H resonances			μ flavor	CP-V		
	CP-V						

Future Energy Frontier: Comparison							
Representative Physics Reach:							
	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo		
LHC	\checkmark		$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$		
$E_{qq} pprox 1.5 - 3$ TeV	partial	partial	non-resonance?		missing mass?		
300 fb ⁻¹				ΔL	CP-V ?		
CLIC	$\sqrt{}$						
$(1-2) imes 10^{34}$	H potential			e flavor	CP-V		
μ -Collider	$\sqrt{\sqrt{\sqrt{1}}}$			\checkmark	\checkmark		
	H resonances			μ flavor	CP-V		
	CP-V						

The main difference between (s)LHC and lepton colliders:

- 1. LHC: more channels accessible (energy threshold, color, spin).
- 2. LHC: much larger SM backgrounds.
- 3. LHC: less constrained kinematics.

Future Energy Frontier: Comparison							
Representative Physics Reach:							
	Higgs(es)	SUSY	Strong Dynamics	Exotics	Astro/Cosmo		
LHC	\checkmark		$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$		
$E_{qq} pprox 1.5 - 3$ TeV	partial	partial	non-resonance?		missing mass?		
300 fb ⁻¹				ΔL	CP-V ?		
CLIC	$\sqrt{}$			\checkmark			
$(1-2) imes 10^{34}$	H potential			e flavor	CP-V		
μ -Collider	$\sqrt{\sqrt{\sqrt{\sqrt{1}}}}$			\checkmark			
	H resonances			μ flavor	CP-V		
	CP-V						

The main difference between (s)LHC and lepton colliders:

- 1. LHC: more channels accessible (energy threshold, color, spin).
- 2. LHC: much larger SM backgrounds.
- 3. LHC: less constrained kinematics.

The main difference between CLIC and μ C:

- 1. Muon collider: s-channel scalar resonances, Higgs or alike.
- 2. Flavor dependent physics e versus μ .
- 3. Muon collider: large decay background.