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The “heavy electron” µ± has helped us

a great deal in understanding particle physics.

Although sharing the same EW interactions,
it isn’t another electron:

mµ ≈ 207 me

τ(µ → eν̄eνµ) ≈ 2.2 µs
cτ ≈ 660 m.

It is these features: heavy mass, short lifetime
that dictate the physics.
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Advantages of a Muon Collider

(1). Less radiative energy loss

∆E ∼ γ4 = (
E

mµ
)4

which allows a higher energy and much smaller machine:∗

and a better beam-energy resolution: δp/p ∼ 0.1% − 0.003%.

(2). Some natural beam-polarization via π− → µ− ν̄.

∗Palmer
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Challenges for a Muon Collider

“Never play with an unstable thing!”

(1). Luminosity: Beam cooling on transverse momentum

(2). Detector backgrounds: Muon decay and re-scattering

(3). Neutrino hazard: When Ecm reaching Multi-TeV.
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Most unique of all at a muon collider:

the s-channel scalar resonance.†
h

b
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†Barger, Berger, Gunion, Han, (Phys. Rep. 1995)



A Higgs Factory

The s-channel resonant production:

σ(µ+µ− → H, A → X) =
4πΓ(H, A → µ+µ−) Γ(H, A → X)
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Model-independent width measurement:
R = 0.01% − 0.003%, 1 fb−1 ⇒ δΓ ≈ 0.15 − 0.35 MeV.‡

‡TH, Z. Liu, 2012.



Energy Frontier: Ecm ∼ 3 − 6 TeV

(1). At LHC, hSM fully covered, but H, A, H± may not.

At
√

s = 14 GeV, still a large hole, especially MH,A > 500 GeV:§
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(2). At LHC, heavy EW pairs are difficult to search for

µ+µ− → H1H2, H̃+H̃−, H̃0H̃0, ℓ̃ℓ̃.

IF no help from colored states g̃ → qq̃ → qq′ χ̃0,± ...

At lepton colliders, pair production rather robust:

Once crossing the pair threshold, observation straightforward.

(rather model-independent, like in Two-Higgs Doublet model etc.)
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Benchmark Processes

Recent meeting at Telluride, CO, Muon Collider 2011:
http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

(2) Z′ or alike

(3) Pair production for SUSY and BSM

(4) Missing energy, DM connection

(5) WW fusion, strong EW sector

(6) Contact interactions
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The desirable relative precision to reach:
∆MW/∆mt ∼ 1/140.
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Sensitivity to mt, Γt(Vtb), αs, mh:
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Precision plot: MW versus mt:
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Take home messages

(1) A muon collider has unique features:
Higgs factory at resonance.
Lepton collider energy frontier.

(2) A muon collider is NOT a competitor for ILC.
The latter is mature and ready to go.

(3) A muon collider could be our future.
It will be (a lot) smaller, and possibly cheaper.
(if technically feasible.)
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The main difference between (s)LHC and lepton colliders:

1. LHC: more channels accessible (energy threshold, color, spin).

2. LHC: much larger SM backgrounds.

3. LHC: less constrained kinematics.

The main difference between CLIC and µC:

1. Muon collider: s-channel scalar resonances, Higgs or alike.

2. Flavor dependent physics e versus µ.

3. Muon collider: large decay background.


