CMS Physics results

Silvia Taroni on the behalf of CMS Switzerland

Universität Zürich

25th June 2013

CMS Experiment

CMS Experiment - Swiss contributions

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8 \text{ TeV}$

CMS worked very well in data taking.

- Swiss involvement in operation:
 - Detector on call: Pixel and ECAL
 - Detector experts (ECAL, DAQ, DQM, DCS, Pixel DAQ)
 - Offline detector performance group
 - Managing and coordination

Swiss leading roles:

- PSI+ETHZ ECAL
 - APDs
 - PbWO4 crystal technology
 - Radiation hardness and detector properties
 - ECAL DAQ & DCS System
 - ECAL Integration Center at Prevessin
- ETHZ Integration
 - Magnet
 - Engineering Center Prevessin
- PSI+ETHZ+UZH BPIX:
 - Complete BPIX detector conceived, designed and built at PSI
 - Complete mechanical support and supply tube built by UZH
 - Development of the Pixel chip (15 years of R&D) at PSI
 - Current BPIX is a CH-only project!

CMS Experiment - Event reconstruction

Excellent work done for:

- detector operation
- calibration, alignment and validation (ECAL: ETHZ, pixel and tracker: PSI and UZH)
- reconstruction (ETH: particle flow, clustering and correction; ETH and UZH: b-tagging; UZH: tracking and calibration; PSI: vertexing)

CMS Experiment - Pile up

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8 \text{ TeV}$

High performance of the event reconstruction despite the high pile up 21 interactions/crossing in 2012, (10 in 2011).

Silvia Taroni on the behalf of CMS Switzerland

CMS Publications

Very good job done by Swiss people confirmed by publications: 47/274 papers published by CMS have Swiss involvement!

- ETHZ: 31 papers (26 physics + 5 performance)
- ▶ PSI: 7 (5+2)
- ▶ UZH: 14 (11+3)

Swiss group members:

- ETHZ: 44
- PSI: 12
- ▶ UZH: 18
 - $\sim 3\%$ of CMS autors

 $\sim 17\%$ of papers!

Higgs Searches

gg

g g fusion

wΖ

VBF

WW. ZZ fusion

9 g

g 00000000

- Particle physics is very well described by SM.
- ► SM needs a Higgs field to give mass to the vector bosons → Higgs boson (0⁺)
 - 4 production processes:

нo

▶ gg, VBF, VH, ttH

VH

W.Z

W, Z bremsstrahlung

ŦtΗ

t T fusion

000000000

SW7

Higgs Mass

- ▶ 4/7/2012: evidence of a new boson
- 5 decay modes exploited by CMS:
 - ▶ $\gamma\gamma$, $b\bar{b}$, $\tau\tau$, WW^{*}, ZZ^{*}
- γγ, ZZ*: very good mass resolution
 - calorimeter calibration
 - tracker alignment
- latest mass measurement: 125.7 ± 0.3(stat) ± 0.3(syst) GeV.
- Is it the SM Higgs Boson?
 - spin parity
 - coupling to vector bosons and fermions
 - additional bosons
 - is it elementary or composite?
 - self coupling

Higgs Spin-Parity

SM Higgs Boson is pure scalar $(J^P = 0^+)$.

- ▶ spin 0⁻ and 1⁺ with $H \rightarrow ZZ$
- ▶ spin 2+ hypotheses with $H \rightarrow ZZ, H \rightarrow WW$

From the post-fit distribution of the test statistics

- 2⁺: obs value at 2.84σ from the expected median
- ▶ 0⁺: obs value at 0.34 *σ* from the expected median

Higgs Couplings

 SM Higgs couplings proportional to particle masses.

 Couplings to fermions and vector bosons: compatible with SM expectations

SUSY

- SM works well but has problems:
 - Hierarchy
 - matter antimatter asymmetry
 - dark matter
- ▶ SM = is it a low energy approximation of a wider theory?
- SUSY is a candidate for SM extension
- SUSY introduces a super-partner for each SM element
- CMS recently focused on third generation partners (\tilde{t}) , $\tilde{\chi}_i^0$, $\tilde{\chi}_i^+$

SUSY

Search for electroweak production of charginos and neutralinos. Focus on the electroweak sector of the SUSY.

Final states:

- three leptons,
- ▶ four leptons,
- two same-sign leptons,
- two opposite-sign-same-flavor leptons plus two jets,
- two opposite-sign leptons inconsistent with Z boson decay

Chargino/neutralino decay products:

- left-, right-handed sleptons
- vector bosons.

SUSY

Recent investigations don't show any signal of SUSY

15 analyses in progress in 2013

Flavour physics: Λ_b^0 lifetime

HQET predicts $\tau(B_c) \ll \tau(\Lambda_b^0) < \tau(B_s) \approx \tau(B^0) < \tau(B^+)$

Λ_b lifetime

- recent prediction[1-3]: $\tau(\Lambda_b)/\tau(B^0) = 0.86 - 0.95$
- ► latest average (PDG): $\tau(\Lambda_b^0)/\tau(B^0) = 1.012 \pm 0.031$

 $au_{\Lambda_b} = 1.503 \pm 0.052 (\textit{stat}) \pm 0.031 (\textit{syst}) \ \textit{ps}$

Other "Swiss" results since last CHIPP meeting

- Measurement of B hadron angular correlations in association to a Z boson, CMS-PAS-EWK-11-015, UZH and ETH
- Event shapes and azimuthal correlations in Z + jets events in pp collisions at $\sqrt{s}=7$ TeV, submitted to Phys. Lett. B, arXiv:1301.1646, ETH
- Interpretation of searches for supersymmetry with simplified models, submitted to PRD arXiv:1301.2175, ETH
- ► Measurement of associated production of vector bosons and tt at √s = 7 TeV, accepted by Phys.Rev.Lett., arXiv:1303.3239, ETH
- ► Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at √s=8 TeV, JHEP03(2013)037, ETH
- ► Measurement of the tt̄ production cross section in pp collisions at √s = 7 TeV with lepton + jets final states, Phys. Lett. B 720 (2013) 83-104, ETH

Summary and outcomes

- CMS experiment works very well, Swiss institutes play a crucial role
- Swiss contributions to Higgs, Susy and SM physics
 - Higgs: Spin parity and couplings compatible with SM Higgs
 - Susy: no evidence, still searching
 - ► SM and flavour physics: Λ_b lifetime, $t\bar{t}V$, V + jets and $V + b\bar{b}$ angular correlations
- We keep on working on both physics...
 - Analyzing current data and preparing analyses for 13 TeV data
 - Higgs: is it SM? is it alone?
 - Susy: direct new physics searches
 - > SM and flavour physics: understanding QCD and indirect searches for new physics ($B_s \rightarrow \mu \mu$)

... and detector

Swiss institutes have a crucial role in the LS1 maintenance work and upgrade

- 1. C. Tarantino, Eur. Phys. J. C33, s895s899 (2004), arXiv:hep-ph/0310241;
- F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, Phys. Rev. D68, 114006 (2003), arXiv:hep-ph/0303235.
- F. Gabbiani, A. I. Onishchenko, and A. A. Petrov, Phys. Rev. D70, 094031 (2004), arXiv:hep-ph/0407004.

Backup slides

From particle to PF particles

MET Resolution vs PU

MET Resolution vs PU

SUSY Production

