

LAGUNA/LBNO

on behalf of CH-Neutrino groups (NOMAD, K2K, ICARUS, OPERA, T2K, MicroBOONE,.... LBNO)

Uni Geneva: A.Blondel, A.Bravar, F.Dufour, Y.Karadzhov, A.Korzenev, E.Noah, M.Ravonel, M.Rayner, R.Asfandiyarov, A.Haesler, C.Martin, E.Scantamburlo, F.Cadoux
 Uni Bern: A.Ereditato, I.Kreslo, C.Pistillo, M.Weber, A.Ariga, T.Ariga, T.Strauss, M.Hierholzer, J.Kawada, C.Hsu, S.Haug
 ETHZ: <u>A. Rubbia</u>, A.Badertscher, F.Bay, C.Cantini, L.Epprecht, A.Gendotti, L.Knecht, S.DiLuise, S.Horikawa, D.Lussi, S.Murphy, K.Nikolics, L.Periale, D.Sgalaberna, F.Sergiampietri, T.Viant, S.Wu

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich CHIPP Plenary meeting 2013 Campus Sursee, June 24-26th, 2013

v3

Where is Godot ? (A. Signer)

Sheldon Lee Glashow

"Unless the SM fails, there is no real hope for progress in particle physics. Forbidden decay modes? NONE; neutrino masses? NO; neutrino mixing? NO; neutrino-less double beta decay ? NO; new particles? NO; magnetic monopoles? NO; fractional charges? NO; new stable forms of matter? NO; proton decay? NO; nnbar oscillations? NO; axions? NO... there is exactly zero evidence for a failure of the SM. The [CERN p-pbar] collider, operating at an energy which is the world highest, is the only realistic hope for something really new & exciting."

S.L. Glashow, St-Vincent workshop, March 1985

-

Neutrinos at the frontier

- Discovery of the Higgs boson confirms/reinforces the "invincible" Standard Model. What are properties of the Higgs field Φ ?
- Neutrino masses and oscillations give us an experimental evidence of physics <u>Beyond</u> the Standard Model (BSM) "neutrino masses and mixings"

$$V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + Y^{ij} \Psi^i_L \Psi^j_R \phi + \frac{g^{ij}}{\Lambda} \Psi^i_L \Psi^j_L \phi \phi^T$$

Dirac term involving LH+RH contact Majorana mass term $Y^{ij} =$ Yukawa's, $g^{ij} =$ couplings, $\Lambda =$ new physics scale

- Neutrinos are the only fermions whose properties remain largely unknown, and these could bring further our knowledge beyond the present SM. They could offer a window to the "Dark Sectors".
- Past and present measurements have significantly clarified the neutrino picture and helped focus our efforts towards future quests.

The 3vSM paradigm (PMNS)

 $\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

- Neutrinos are produced and interact as weak eigenstates.
- The weak eigenstates are coherent superposition of the fundamental mass eigenstates. The mass eigenstates are the solutions of the free Hamiltonian and represent the propagation of the neutrinos in space.

- \star The 3x3 Unitary matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata matrix, usually abbreviated PMNS
- **★** The PMNS matrix is usually expressed in terms of 3 rotation angles $\theta_{12}, \theta_{23}, \theta_{13}$ and a complex phase δ , using the notation $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Dominates:
Matrix Atmospheric Aublia Construction Construction

Global data on neutrino escillations

from various neutrino sources and vastly different energy and distance scales:

sun

reactors

atmosphere

accelerators

Homestake, SAGE, GALLEX SuperK, SNO, Borexino

KamLAND, CHOOZ

SuperKamiokande

K2K, MINOS, T2K

- global data fits nicely with the 3 neutrinos from the SM
- a few "anomalies" at 2-3 σ: LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum
 - Sterile states conceivable, would imply PMNS matrix non-unitary

A. Rubbia

The 3vSM paradigm: global fit

	Free Fluxes + RSBL	
	bfp $\pm 1\sigma$	3σ range
$\sin^2 heta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.346$
$ heta_{12}/^{\circ}$	$33.57_{-0.75}^{+0.77}$	$31.38 \rightarrow 36.01$
$\sin^2 heta_{23}$	$0.437\substack{+0.061\\-0.031}$	$0.357 \rightarrow 0.654$
$ heta_{23}/^{\circ}$	$41.4^{+3.5}_{-1.8}$	$36.7 \rightarrow 54.0$
$\sin^2 heta_{13}$	$0.0231\substack{+0.0023\\-0.0022}$	$0.0161 \rightarrow 0.0299$
$ heta_{13}/^{\circ}$	$8.75_{-0.44}^{+0.42}$	$7.29 \rightarrow 9.96$
$\delta_{ m CP}/^{\circ}$	341^{+58}_{-46}	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.45_{-0.16}^{+0.19}$	$6.98 \rightarrow 8.05$
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2}$ (N)	$+2.421^{+0.022}_{-0.023}$	$+2.248 \rightarrow +2.612$
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.410^{+0.062}_{-0.063}$	$-2.603 \rightarrow -2.226$

Current precision:
 δ(θ₁₂)≈2%, δ(θ₂₃)≈8%,
 δ(θ₁₃)≈5%, δ(Δm²₂₁)≈3%,
 δ(Δm²₃₁)≈1%(NH)-3%(IH)

- No hints for neutrino mass hierarchy (MH)
- Both NH and IH solutions are allowed
- All values of CP-phase δ are allowed at 3σ C.L.

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv: 1209.3023

Goal: next underground observatory?

Wednesday, June 26, 13

Goal: next underground observatory?

Wednesday, June 26, 13

LAGUNA-LBNO overview

- LAGUNA DS (FP7 Design Study 2008-2011)
 - ~ 100 members; 10 countries
 - 3 detector technologies ⊗ 7 sites,
 different baselines (130 → 2300km)

LAGUNA-LBNO DS (FP7 DS Long Baseline

Neutrino Oscillations, 2011-2014)

- ~300 members; 14 countries + CERN
- Down selection of sites & detectors

Large Apparatus for Grand Unification and Neutrino Astrophysics - Long Baseline Neutrino Oscillations

- LBNO (CERN SPSC EoI for a very long baseline neutrino oscillation experiment, June 2012)
 - Consensus towards full long baseline physics + full astroparticle as mandatory physics drivers
 - An incremental approach with clear phase 1 physics capabilities
 - ~230 authors; 51 institutions
 - CERN-SPSC-2012-021 ; SPSC-EOI-007, under review
 - European Strategy → high priority for long baseline neutrino physics; explore USA/Japan

CHIPP2013

A. Rubbia – LAGUNA-LBNO

LAGUNA-LBNO: sites overview

Three far sites considered in details

arXiv:1003.1921 [hep-ph]

- Option 1: Pyhäsalmi mine (privately owned), 4000 m.w.e overburden, excellent infrastructure for deep underground access
- Option 2: Fréjus, nearby road tunnel, 4800 m.w.e. overburden, horizontal access
- Option 3: Umbria (LNGS extension), green site with horizontal access, 2000 m.w.e., CNGS off-axis beam

• Protons and beams:

- Design of new CERN conventional neutrino beam to Finland (CN2PY) Baseline = 2300 km
- Upgrades of CERN SPS to 700kW
- New CERN HP-PS (2MW@50 GeV)
- Recently: assessment of a new conventional beam coupled to accelerator upgrade at Protvino, Russia (OMEGA project) – Baseline = 1160 km

 Detector options: 20, 50, 100 kton LAr; 50 kton LSc and 540 kton WCD

A. Rubbia – LAGUNA-LBNO

CHIPP2013

10

A. Rubbia – LAGUNA-LBNO

CHIPP2013

Wednesday, June 26, 13

Wednesday, June 26, 13

The CN2PY beam

- Phase 1 : use the proton beam extracted beam from SPS
- 400 GeV, max 7.0 1013 protons every 6 sec, 750 kW nominal beam power, 10 µs pulse
- Yearly integrated pot = (8–13)e19 pot / yr depending on "sharing" with other fixed target programmes.
- Phase 2 : use the proton beam from the new HP-PS
- 50(70) GeV, 1 Hz, 2.5e14 ppp, 2 MW nominal beam power, 4 µs pulse

High power HP-PS study

Main dipole field inj. / extr.

Dipole field rate dB/dt (acc. ramp)

Ramp time

A. Rubbia – LAGUNA-LBNO

0.17 / 2.1

500

3.9

0.17 / 3.13

500

5.9

- Injection and extraction concepts are available
- Basic ideas about accelerating RF system
- Basic ideas about collimation
- Consolidate optics and establish set of requirements for different magnet families.
- Design of magnet foreseen.

CHIPP2013

Wednesday, June 26, 13

14

[T]

[ms]

[T/s]

EXAMPLE NO (CERN SPSC-EOI-007)

- In June 2012, an enlarged LAGUNA-LBNO Consortium has put forward an Expression of Interested focused on neutrino Mass Hierarchy determination and CPV discovery coupled to a full astrophysics programme to CERN
 - Initial positive feedback from SPSC (108th minutes, January 2013)
 - Physics case supported by European Strategy as High-priority large-scale scientific activities: "Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector."
- An incremental long-baseline program with a competitive 1st stage guaranteeing high level physics performance from the beginning.
 - LBNO Stage 1 is based on a 20 kt fid. LAr detector (double phase) and a conventional beam from the CERN SPS of 700 kW at 2300 km.
 - If the findings from Stage 1 require, the detector and the beam will be upgraded to 70 kton mass and 2 MW proton power.
- The costs, possible implementation schemes and physics potentials will be further studied until the end of 2014.
- Proposed next step: Large-scale detector prototyping with CERN support, with priority emphasis on a large double-phase LAr demonstrator, using charged-particle test beams (2014-2017).

CHIPP2013

A. Rubbia – LAGUNA-LBNO

15

Rich MH & CP phenomenology

• First order approximation in expansion (Sato et al.):

Difference between neutrinos and antineutrinos:

Wednesday, June 26, 13

Expected oscillation probability

Wednesday, June 26, 13

0.02 LBNO main physics goals

Long baseline neutrino oscillations $\delta_{CP}=90^{\circ}$

- $\nu_{\mu} \rightarrow \nu_{e} \& \nu_{\mu} \rightarrow \nu_{\tau} \& \stackrel{\circ}{=} \nu_{\mu} \stackrel{\circ}{\to} \nu_{\mu} \& \nu NC$
- Direct measurement^{0,08} f the energy dependence (L/E behaviour) induced by matter effects and CP-phase terms, independently for v and anti-v, by direct measurement of event spectrum, in particular covering 1st and 2nd oscillation maxima
- Mass hierarchy determination at >5 σ C.L. in first two years of running
- CP-phase measurement and CPV "discovery" $(\Rightarrow 5\sigma C.L.)$
- Test of three generation mixing paradigm

A full astrophysics programme

- Nucleon decays (direct GUT evidence)
- Atmospheric neutrino detection with complementary oscillation measurements and Earth spectroscopy
- Astrophysical neutrino detection and searches for new sources of neutrinos

Near detector measurements

Exclusive neutrino cross-sections, rare neutrino processes, oscillations at short baseline

A. Rubbia – LAGUNA-LBNO

0.12

LBNO 20kton LAr: e-like CC sample

Wednesday, June 26, 13

δ_{CP} & MH dependence SPS(700kW), 10y, 75%nu-25%antinu; m=70kt

Wednesday, June 26, 13

Sensitivity to mass hierarchy

Extracting MH from global fits can not replace a direct 5σ measurement from a direct measurement !

Provide a >5 σ direct determination of MH independent of the values of θ_{23} & δ_{CP} in \approx 2 years of running

Other methods proposed (atmospheric neutrinos, reactors) do not provide such a level of sensitivity and could be prone to irreducible systematic errors

CHIPP2013

A. Rubbia – LAGUNA-LBNO

Wednesday, June 26, 13

21

Wednesday, June 26, 13

A. Rubbia – LAGUNA-LBNO

LAr detector prototyping efforts

ETHZ & University Bern detector R&D

(1) ArDM-1t @ CERN

J.Phys.Conf.Ser. 39 (2006) 129-132

World's first double phase liquid argon LEM-TPC successfully operated

40x80cm2 JINST 7 (2012) P08026 JINST 8 (2013) P04012

J.Phys.Conf.Ser. 308 (2011) 012008

0.4 ton LAr TPC

World's largest sample of charged particles events ever collected

(3) ArgonTube @ Bern

Nucl.Phys.Proc.Suppl. 139 (2005) 301-310

Aim to demonstrate world's longest electron drift path

(4) 10T @ CERN J.Phys.Conf.Ser. 308 (2011) 012024

Purity by flushing w/o evacuation

A. Rubbia – LAGUNA-LBNO

Wednesday, June 26, 13

23

ETH Reminder: Double phase concept

Double phase LAr demonstrator

- We are proposing a 6x6x6 = 216 m³ active volume double phase LAr detector to be constructed and operated at CERN
- Charged test beams to collect the large controlled data set allowing electromagnetic and hadronic calorimetry and general detector performance (PID, ...) to be measured, simulation and reconstruction to be improved and validated.

Proposal under submission to CERN SPSC committee (June 2013)

CHIPP2013

Wednesday, June 26, 13

25

LBNO near detector and hadroproduction

<u>Aim</u>: systematic errors for signal and backgrounds in the far detectors below ±5%, possibly at the level of $\pm 2\% \Rightarrow$ control of fluxes, cross-sections, efficiencies,...

- Concept: 20 bar gas argon-mixture TPC (2.4 m × 2.4 m × 3 m) surrounded by scintillator bar tracker embedded in an instrumented magnet with field 0.5T
- 600 kg argon mass in TPC
- 0.2 event/spill @ 7e13 ppp 400 GeV
- O(100'000) events/year

- It is widely recognized that hadroproduction measurements with thin or replica target are really crucial for precision neutrino experiments (eg. K2K, T2K, MINOS).
- CERN NA61 upgrade needed for 400 GeV incident protons
- Precision neutrino cross-section measurements: e.g. MINERVA, T2K-ND280, also nuSTORM CHIPP2013

A. Rubbia – LAGUNA-LBNO

vSTORM: neutrinos from stored muons

→ first step towards neutrino factory and muon collider

Conclusion

- The SM, despite huge successes, has still some drawbacks. The further investigation of the neutrino sector and the search for proton decays with very large underground observatories is a promising way to make progress in some of these areas.
- The LAGUNA/LBNO design study, led by Swiss groups, has made significant progress at designing and optimising a next generation deep underground neutrino observatory in Europe.
- LBNO has been put forward to CERN with unique physics potentials, including astro-particle physics and proton decay search. It is conceived as an incremental approach starting with an underground LAr detector, a clear stage 1 physics goal (>2023) and well-defined upgrade plan (>2030).
- Physics case strongly endorsed by European Strategy.
- Swiss groups are heavily involved in the definition of the project and performing intense detector R&D. We are now proposing a demonstrator for the double phase LAr technology at a relevant scale (216m³) to be built at CERN during the period 2014-2017.

Wednesday, June 26, 13

Wednesday, June 26, 13

LBNO Expression of Interest

- A. Stahl,¹ C. Wiebusch,¹ A. M. Guler,² M. Kamiscioglu,² R. Sever,² A.U. Yilmazer,³ C. Gunes,³
- D. Yilmaz,³ P. Del Amo Sanchez,⁴ D. Duchesneau,⁴ H. Pessard,⁴ E. Marcoulaki,⁵ I. A. Papazoglou,⁵ V. Berardi,⁶ F. Cafagna,⁶ M.G. Catanesi,⁶ L. Magaletti,⁶ A. Mercadante,⁶
- M. Quinto,⁶ E. Radicioni,⁶ A. Ereditato,⁷ I. Kreslo,⁷ C. Pistillo,⁷ M. Weber,⁷ A. Ariga,⁷ T. Ariga,⁷
- T. Strauss,⁷ M. Hierholzer,⁷ J. Kawada,⁷ C. Hsu,⁷ S. Haug,⁷ A. Jipa,⁸ I. Lazanu,⁸ A. Cardini,⁹
- A. Lai,⁹ R. Oldeman,¹⁰ M. Thomson,¹¹ A. Blake,¹¹ M. Prest,¹² A. Auld,¹³ J. Elliot,¹³ J. Lumbard,¹³
 C. Thompson,¹³ Y.A. Gornushkin,¹⁴ S. Pascoli,¹⁵ R. Collins,¹⁶ M. Haworth,¹⁶ J. Thompson,¹⁶
- G. Bencivenni,¹⁷ D. Domenici,¹⁷ A. Longhin,¹⁷ A. Blondel,¹⁸ A. Bravar,¹⁸ F. Dufour,¹⁸ Y. Karadzhov,¹⁸ A. Korzenev,¹⁸ E. Noah,¹⁸ M. Ravonel,¹⁸ M. Rayner,¹⁸ R. Asfandiyarov,¹⁸ A. Haesler,¹⁸
 - C. Martin,¹⁸ E. Scantamburlo,¹⁸ F. Cadoux,¹⁸ R. Bayes,¹⁹ F.J.P. Soler,¹⁹ L. Aalto-Setälä,²⁰
 - K. Enqvist,²⁰ K. Huitu,²⁰ K. Rummukainen,²⁰ G. Nuijten,²¹ K.J. Eskola,²² K. Kainulainen,²²
 - T. Kalliokoski,²² J. Kumpulainen,²² K. Loo,²² J. Maalampi,²² M. Manninen,²² I. Moore,²²
- J. Suhonen,²² W.H. Trzaska,²² K. Tuominen,²² A. Virtanen,²² I. Bertram,²³ A. Finch,²³ N. Grant,²³
- L.L. Kormos,²³ P. Ratoff,²³ G. Christodoulou,²⁴ J. Coleman,²⁴ C. Touramanis,²⁴ K. Mavrokoridis,²⁴
- M. Murdoch,²⁴ N. McCauley,²⁴ D. Payne,²⁴ P. Jonsson,²⁵ A. Kaboth,²⁵ K. Long,²⁵ M. Malek,²⁵
- M. Scott,²⁵ Y. Uchida,²⁵ M.O. Wascko,²⁵ F. Di Lodovico,²⁶ J.R. Wilson,²⁶ B. Still,²⁶ R. Sacco,²⁶ R. Terri,²⁶ M. Campanelli,²⁷ R. Nichol,²⁷ J. Thomas,²⁷ A. Izmaylov,²⁸ M. Khabibullin,²⁸
- A. Khotjantsev,²⁸ Y. Kudenko,²⁸ V. Matveev,²⁸ O. Mineev,²⁸ N. Yershov,²⁸ V. Palladino,²⁹ J. Evans,³⁰
 S. Söldner-Rembold,³⁰ U.K. Yang,³⁰ M. Bonesini,³¹ T. Pihlajaniemi,³² M. Weckström,³² K.
- Mursula,³² T. Enqvist,³² P. Kuusiniemi,³² T. Räihä,³² J. Sarkamo,³² M. Slupecki,³² J. Hissa,³² E. Kokko,³² M. Aittola,³² G. Barr,³³ M.D. Haigh,³³ J. de Jong,³³ H. O'Keeffe,³³ A. Vacheret,³³
- A. Weber,^{33,34} G. Galvanin,³⁵ M. Temussi,³⁵ O. Caretta,³⁴ T. Davenne,³⁴ C. Densham,³⁴ J. Ilic,³⁴
 P. Loveridge,³⁴ J. Odell,³⁴ D. Wark,³⁴ A. Robert,³⁶ B. Andrieu,³⁶ B. Popov,^{36,14} C. Giganti,³⁶
 J.-M. Levy,³⁶ J. Dumarchez,³⁶ M. Buizza-Avanzini,³⁷ A. Cabrera,³⁷ J. Dawson,³⁷ D. Franco,³⁷
- D. Krvn.³⁷ M. Obolensky.³⁷ T. Patzak.³⁷ A. Tonazzo.³⁷ F. Vanucci.³⁷ D. Orestano.³⁸ B. Di Micco.³⁸
- L. Tortora,³⁹ O. Bésida,⁴⁰ A. Delbart,⁴⁰ S. Emery,⁴⁰ V. Galymov,⁴⁰ E. Mazzucato,⁴⁰ G. Vasseur,⁴⁰ M. Zito,⁴⁰ V.A. Kudryavtsev,⁴¹ L.F. Thompson,⁴¹ R. Tsenov,⁴² D. Kolev,⁴² I. Rusinov,⁴²
 - M. Bogomilov,⁴² G. Vankova,⁴² R. Matev,⁴² A. Vorobyev,⁴³ Yu. Novikov,⁴³ S. Kosyanenko,⁴³
- V. Suvorov,⁴³ G. Gavrilov,⁴³ E. Baussan,⁴⁴ M. Dracos,⁴⁴ C. Jollet,⁴⁴ A. Meregaglia,⁴⁴ E. Vallazza,⁴⁵
- S.K. Agarwalla,⁴⁶ T. Li,⁴⁶ D. Autiero,⁴⁷ L. Chaussard,⁴⁷ Y. Déclais,⁴⁷ J. Marteau,⁴⁷ E. Pennacchio,⁴⁷
 E. Rondio,⁴⁸ J. Lagoda,⁴⁸ J. Zalipska,⁴⁸ P. Przewlocki,⁴⁸ K. Grzelak,⁴⁹ G. J. Barker,⁵⁰ S. Boyd,⁵⁰
- P.F. Harrison,⁵⁰ R.P. Litchfield,⁵⁰ Y. Ramachers,⁵⁰ A. Badertscher,⁵¹ A. Curioni,⁵¹ U. Degunda,⁵¹
- L. Epprecht,⁵¹ A. Gendotti,⁵¹ L. Knecht,⁵¹ S. DiLuise,⁵¹ S. Horikawa,⁵¹ D. Lussi,⁵¹ S. Murphy,⁵¹
- G. Natterer,⁵¹ F. Petrolo,⁵¹ L. Periale,⁵¹ A. Rubbia,^{51,*} F. Sergiampietri,⁵¹ and T. Viant⁵¹

- 1. III. Physikalisches Institut, RWTH Aachen, Aachen, Germany
- 2. Middle East Technical University (METU), Ankara, Turkey
- 3. Ankara University, Ankara, Turkey
- 4. LAPP, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France
- 5. Institute of Nuclear Technology-Radiation Protection, National Centre for Scientific Research "Demokritos", Athens, Greece
- 6. INFN and Dipartimento interateneo di Fisica di Bari, Bari, Italy
- 7. University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland
- 8. Faculty of Physics, University of Bucharest, Bucharest, Romania
- 9. INFN Sezione di Cagliari, Cagliari, Italy
- 10. INFN Sezione di Cagliari and Università di Cagliari, Cagliari, Italy
- 11. University of Cambridge, Cambridge, United Kingdom
- 12. Universita' dell'Insubria, sede di Como/ INFN Milano Bicocca, Como, Italy
- 13. Alan Auld Engineering, Doncaster, United Kingdom
- 14. Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
- 15. Institute for Particle Physics Phenomenology, Durham University, United Kingdom
- 16. Technodyne International Limited, Eastleigh, Hampshire, United Kingdom
- 17. INFN Laboratori Nazionali di Frascati, Frascati, Italy
- 18. University of Geneva, Section de Physique, DPNC, Geneva, Switzerland
- 19. University of Glasgow, Glasgow, United Kingdom
- 20. University of Helsinki, Helsinki, Finland
- 21. Rockplan Ltd., Helsinki, Finland
- 22. Department of Physics, University of Jyväskylä, Finland
- 23. Physics Department, Lancaster University, Lancaster, United Kingdom
- 24. University of Liverpool, Department of Physics, Liverpool, United Kingdom
- 25. Imperial College, London, United Kingdom
- 26. Queen Mary University of London, School of Physics, London, United Kingdom
- 27. Dept. of Physics and Astronomy, University College London, London, United Kingdom
- 28. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- 29. INFN Sezione di Napoli and Università di Napoli, Dipartimento di Fisica, Napoli, Italy
- 30. University of Manchester, Manchester, United Kingdom
- 31. INFN Milano Bicocca, Milano, Italy
- 32. University of Oulu, Oulu, Finland
- 33. Oxford University, Department of Physics, Oxford, United Kingdom
- 34. STFC, Rutherford Appleton Laboratory, Harwell Oxford, United Kingdom
- 35. AGT Ingegneria S.r.I., Perugia, Italy
- 36. UPMC, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France
- 37. APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité Paris, France
- 38. Università and INFN Roma Tre, Roma, Italy
- 39. INFN Roma Tre, Roma, Italy
- 40. IRFU, CEA Saclay, Gif-sur-Yvette, France
- 41. University of Sheffield, Department of Physics and Astronomy, Sheffield, United Kingdom
- 42. Department of Atomic Physics, Faculty of Physics, St.Kliment Ohridski University of Sofia, Sofia, Bulgaria
- 43. Petersburg Nuclear Physics Institute (PNPI), St-Petersburg, Russia
- 44. IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
- 45. INFN Trieste, Trieste, Italy
- 46. IFIC (CSIC & University of Valencia), Valencia, Spain
- 47. Université de Lyon, Université Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne, France
- 48. National Centre for Nuclear Research (NCBJ), Warsaw, Poland
- 49. Institute of Experimental Physics, Warsaw University (IFD UW), Warsaw, Poland
- 50. University of Warwick, Department of Physics, Coventry, United Kingdom
- 51. ETH Zurich, Institute for Particle Physics, Zurich, Switzerland

Wednesday, June 26, 13

A. Rubbia – LAGUNA-LBNO

31

ETH

Acknowledgements

- FP7 Research Infrastructure "Design Studies" LAGUNA (Grant Agreement No. 212343 FP7-INFRA-2007-1) and LAGUNA-LBNO (Grant Agreement No. 284518 FP7-INFRA-2011-1)
- We are grateful to the CERN Management for supporting the LAGUNA-LBNO design study.
- We thank the CERN staff participating in LAGUNA-LBNO, in particular M.Benedikt, M.Calviani, I.Efthymiopoulos, A.Ferrari, R.Garoby, F.Gerigk, B.Goddard, A.Kosmicki, J.Osborne, Y.Papaphilippou, R.Principe, L.Rossi, E.Shaposhnikova and R.Steerenberg.
- We thank the HP-PS design study team J. Alabau, A. Alekou, F.Antoniou, M.Benedikt, B.Goddard, A.Lachaize, C.Lazardis, Y.Papaphilippou, A.Parfenova, R.Steerenberg.
- The contributions of Anselmo Cervera are also recognized.

CHIPP2013

Wednesday, June 26, 13

A. Rubbia – LAGUNA-LBNO

Courtesy PvZ

CHIPP2013

Wednesday, June 26, 13

A. Rubbia – LAGUNA-LBNO

Total integrated p.o.t.

Wednesday, June 26, 13

A first look at nearby mines...

Baseline from

Loodalon	CERN (km)	Protvino (km)	ESS (km)
Pyhäsalmi, Fl	2300	1160	1140
/inkgruvan,SE	1530	1420	360
arpenberg,SE	1730	1300	540
ristineberg,SE	2230	1530	1080
Björkdal,SE	2270	1450	1100
Munka,SE	2310	1620	1160
Kallak,SE	2400	1700	1260
/lalmsberg,SE	2480	1620	1320
iirunavaara,SE	2530	1700	1380
aunisvaara,SE	2552	1580	1390
Løkken, NO	1536	1740	500
ongsberg, NO	1900	1800	840

Baseline from

- The concerns that the Finnish government expressed are obviously serious, one cannot exclude that other sites with similar advantages need to be found.
- There are several mines nearby.
- See also talk by Tord Ekelof (next talk)

CHIPP2013

Wednesday, June 26, 13

A. Rubbia – LAGUNA-LBNO

Saudi Arabia

35

LAGUNA 6x6x6 m³ prototype compared to 20kton

Wednesday, June 26, 13

36

LAr detector design

A. Rubbia – LAGUNA-LBNO

- GLACIER concept unchanged since 2003: Simple, scalable detector design, from one up to 100 kton (hep-ph/0402110)
- Single module non-evacuable cryo-tank based on industrial LNG technology
 - industrial conceptual design (Technodyne, AAE, Ryhal engineering, TGE, GTT)
 - two tank options: 9% Ni-steel or membrane (detailed comparison up to costing of assembly in underground cavern)
 - three volumes: 20, 50 and 100 kton
- Liquid filling, purification, and boiloff recondensation
 - industrial conceptual design for liquid argon process (Sofregaz), 70kW total cooling power
 @ 87 K
 - purity < 10 ppt O₂ equivalent
- Charge readout (e.g. 20 kton fid.)
 - 23'072 kton active, 824 m² active area
 - 844 readout planes, 277'056 channels total
 - 20 m drift
- Light readout (trigger)
 - 804 8" PMT (e.g. Hamamatsu R5912-02MOD)
 - WLS coated placed below cathode

CHIPP2013