Lepton Flavor Violation µ3e @ PSI

searching for the neutrino-less muon decay $\mu^+ \rightarrow e^+ e^- e^+$

CHIPP 2013 Sursee, June 26 '13

Alessandro Bravar

LFV in "Standard Model"

In SM ($m_v = 0$) Lepton Flavor is strictly conserved !

neutrino oscillations $\rightarrow m_v \neq 0$ & Lepton Flavor is not anymore conserved \rightarrow charged LFV possible via loop diagrams, but heavily suppressed

 \rightarrow measurement not affected by SM processes

Flavor Conservation in the charge lepton sector:

processes like
$$\mu A \rightarrow e A$$

 $\mu \rightarrow e + \gamma$
 $\mu \rightarrow e e e$ have not been observed yet.

Many models, however the mechanism and size of cLFV remain elusive.

Lepton Flavor Violation in $\mu \rightarrow$ eee

neutrino oscillations

SUSY

"exotic" particles

current experimental limit BR($\mu \rightarrow eee$) < 10⁻¹² (90% c.l., SINDRUM 1988)

```
this experiment (\mu3e @ PSI)
BR(\mu \rightarrow eee) < 10<sup>-15</sup> (90% c.l. exclusion) phase I (2015 – 2017)
BR(\mu \rightarrow eee) < 10<sup>-16</sup> (90% c.l. exclusion) phase II (2018 – 2020)
BR(\mu \rightarrow eee) = 3 × 10<sup>-16</sup> (5 \sigma discovery)
```

explore physics up to the PeV scale complementary to direct searches at LHC

Model Comparison ($\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$)

Effective charge LFV Lagrangian ("toy" model) (Kuno and Okada)

$$\frac{BR(\mu^+ \to e^+ e^- e^+)}{BR(\mu^+ \to e^+ \gamma)} \sim 0.006$$

Z - penguin

appeared in the literature in 1995 (Hisana et al.) and "rediscovered" recently

dominates if $\Lambda >> M_Z$

LFV Searches : Current Situation

Mu3e Baseline Design

search for $\mu^+ \rightarrow e^+ e^- e^+$ with sensitivity ~10⁻¹⁶ (PeV scale) using the most intense DC muon beam (p ~ 28 MeV/*c*) in the world \rightarrow observe ~10¹⁷ μ decays (over a reasonable time scale) rate ~ 2 × 10⁹ μ decays / sec

 \rightarrow build a detector capable of measuring 2 \times 10⁹ μ decays / sec

acceptance ~ 70% for $\mu \rightarrow$ eee decay (3 tracks!)

200 M HV-MAPS (Si pixels w/ embedded ampli.) channels \sim 10 k ToF channels (SciFi and Tiles)

Backgrounds

$$\sum_{i} \vec{p}_{i} = 0$$
$$\sum_{i} E_{i} = m_{\mu}$$
$$\Delta t_{tracks} \sim 0$$

irreducible backgrounds

accidental backgrounds

 $BR(\mu \rightarrow eeevv) = 3.4 \times 10^{-5}$

to suppress backgrounds

precise kinematics (p and E_{TOT} resolution): $\Delta m_{\mu} < 0.5 \text{ MeV/c}^2$ precise timing (ToF): $\Delta t \sim 100 \text{ ps}$ precise vertexing: $\Delta x \sim 0.1 \text{ mm}$

Staged Approach

Sensitivity Projection

PHASE I – Compact Muon Beam Line for π E5 Area at PSI

Time-scale Phase I: ~ (2015 – 2017)

One of the world's highest intensity surface muon beams - 28 MeV/c from stopped π -decay at target surface (capable > 10⁸ µ⁺ s⁻¹)

Must share πE5 Area with MEG-Experiment ⊘hence "compact" beam line in front-part of area without removing MEG Detector

•high intensity almost monochromatic beam $(\Delta P/P < 8\% FWHM)$

maximum stopping rate in thinnest target
 ~ 150 mg/cm²

polarization ~ 90%

•optimal 8x higher beam correlated e⁺ background suppression (Wien filter)

PHASE II – GHz Muon Beam from SINQ Spallation Neutron Target

Mu3e Proto-Collaboration

DPNC Geneva University

- Physics Institute, University Heidelberg
- KIP, University Heidelberg
- ZITI Mannheim, University Heidelberg
- Paul Scherrer Institute

- Physics Institute, University Zurich
- Institute for Particle Physics, ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Silicon Pixel Detector HV-MAPS

High Voltage Monolithic Active Pixel Sensors

transistor logic embedded in N-well

< 50 µm thickness active sensors standard CMOS process (low cost) low noise low power

~ $80 \times 80 \ \mu m^2$ pixels 200 M channels

Heidelberg

Sci-Fi Tracker - ToF

high spatial resolution (matching with Si hits)

good time resolution < 1 ns

scintillating fibers 250 $\mu m \oslash$ (3 staggered layers)

24 Sci-Fi ribbons (16 mm x ~400 mm)

readout with Si-PMs on both ends

- Si-PM arrays (à la LHCb) ~ 3000 ch.
- individual fiber readout ~ 9000 ch.

rate: several MHz / SciFi ch.

readout with the DRS waveform digitizer

occupancy?

Timing

 $\sigma_{\Delta t}$ ≈ 800 ps with at least 3 ph.e. detected (almost 100 % efficient)

 $\Rightarrow \sigma_{MT} \approx 400 \text{ ps} \ge 3 \text{ ph.e.}$ mean time does not depend on hit position ☺

 $\sigma_{\rm MT} = \frac{1}{2} \sigma_{\Delta t}$

 $\sigma_{\Delta t}$ ≈ 600 ps with at least 10 ph.e. detected on each side (~10% "efficient")

 \Rightarrow σ_{MT} ≈ 300 ps, ≥ 10 ph.e. (mean time)

A. Damyanova (UniGE

obtained with risetime compensated discriminator, not a digitizer (DRS4)

Read-out of Sci-Fis

At present considering two options with Hamamatsu recent developments: pixels with trenches

increased P.D.E. ?

Si-PM arrays

Single Fiber readout

monolithic device with 6 x 32 independent sensors $0.4 \times 0.4 \text{ mm}^2$ with 100 μ pixels and 100 μ spacing (bias voltage regulated for reach sensor $\Delta V \sim 0.5 \text{ V}$)

64 channel monolithic device à la LHCb 250 μ "pitch", 50 μ pixels common bias voltage

occupancy is the issue keep rate 1 to 2 MHz / ch.

fibers are glued in a matrix with same geometry as the photo-device

SciFi Simulations

light propagation

R. Gredig (UniZH)

from Mu3e proposal (only construction of the Mu3e detector)

component	who
beam	PSI
target	PSI (+ Heidelberg)
SciFi tracker	UniGE, UniZH, ETHZ, PSI
timing electronics	PSI, UniGE, UniZH, ETHZ
slow control	PSI
infrastructure	PSI

Letter of Intent

January 2012

Research Proposal January 2013 Stage I approved HiMB 2 year feasibility study to start this summer

Technical review

January 2014

High precision experiments at National Laboratories promoted by European Strategy

Funding applications submitted