Jets and high-p_T hadrons in CMS

Yaxian MAO for the CMS Collaboration

International Conference on the Initial Stages in High-Energy Nuclear Collisions September 8th-14th, 2013

Objective

- Exploit high p_T particles and jets to understand initial and final state properties of heavy-ion collisions:
 - High p_T partons produced in hard interactions in the initial phase of the collision...
 - in pp: understand and characterize the probe
 - ...Undergo multiple interaction inside the collision region prior to hadronization
 - in pA: benchmark for AA, disentangle initial from final state effects
 - in AA: probe the QCD medium created in the collision, identify final state effects

Centrality and comparisons to p+p

- Scaling factor to compare to p+p measurements
 - N_{part}: number of participant nucleons
 - N_{coll}: number of binary N+N collisions
 - both depend on the impact parameter (centrality) in pA and AA
- Centrality estimation:
 - slicing the x-sec in forward energy
 - Simulation
 - Glauber model
 - ➡ see Shengquan Tuo's talk

CMS Detector capabilities

CMS is a multi-layer detector

- Excellent tracking capabilities
 - Momentum resolution of I-2% to I00GeV/c
 - Displaced vertices for heavy flavor
- High-granularity calorimetry
 - Directly identifiable jets
 - γ-jet studies
- High Level Trigger
 - Higher energy reach
 - Ultra-central events
 - Improved J/ψ , Z^0 , Υ

Yaxian MAO

Vanderbilt University

Lessons from HI particles and jets production

- High p_T final state hadrons are strongly suppressed ($R_{AA} \sim 0.5$ for $p_T > 50$ GeV/c)
- About 50% of jets ($R_{AA} \sim 0.5$) are lost at a given p_T in most central PbPb

Lessons from HI jet fragmentation and shapes

- Jet fragments into more low p_T hadrons with less intermediate p_T hadrons
- Jet energy re-distributed to large distance from jet axis

Lessons from HI dijets production

• Jet quenching is observed as a pronounced dijet p_T imbalance in central collision, with no visible angular decorrelation

Lessons from HI dijets imbalance

PLB 712 (2012) 176

- Energy imbalance increases with centrality
- p_T -ratio deviates from the unquenched reference in a p_T -independent way

Baseline for HI collisions

PbPb collisions

- Clear signature of the formation of Quark-Gluon Plasma (QGP)
- Strongly interacting particles affected by the presence of QGP
 - quenched high pT particles/jets
 - changed jet fragmentation functions/shapes
 - Imbalanced dijets

- Can we understand the baseline for PbPb?
- How do strongly interacting particles behave in cold nuclear matter? quenching?
- Can we observe effects due to the nuclear structure at small x?

Motivation for pPb at LHC

• Elements of proton-proton as well as HI collisions

Vanderbilt University

10

Dijet in pPb collisions recorded by CMS

Yaxian MAO Vanderbilt University

IS2013, 10/09/2013, Illa da Toxa, Spain

V

Dijet event classes in pPb

See Doga's talk

Event classification

4<n<5.2

 Using HF energy deposition in the most forward and backward regions of the calorimeter as a centrality proxy

Dijet

-3<η<3

Event classification

• Required double sided selection (DS): at least one particle with E > 3 GeV in both forward calorimeters (3 < $|\eta|$ < 5)

Vanderbilt University

Dijet p_T ratios

- No modification is observed in dijet p_T ratio up to E_T^{HF[|η|>4]} > 40 GeV (top 0-2.5%)
 - (Not enough statistics to check PbPb collisions in the same E_T^{HF[|n|>4]} interval)

Dijet $\Delta \phi$

• $\Delta \phi$ distribution stays unchanged w.r.t. HF energy compared to pp reference

Summary from dijet p_T ratio and $\Delta \phi$

- With the current systematic uncertainty, no detectable change in $p_{T,2}/p_{T,1}$ and $\Delta \phi$ width as a function of forward calorimeter energy
 - No jet quenching observed in pPb collisions in all centralities
- Establish the basis to use the jets for nPDF determination

Nuclear PDF Predictions at LHC

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

 At LHC energies, the R^{Pb} is expected to have significant shadowing/anti-shadowing effects

PDF - Kinematic reach in CMS

Kinematic range with the dijet selection: $p_{T,1} > 120 \text{ GeV/c}, p_{T,2} > 30 \text{ GeV/c}, \Delta \phi_{12} > 2\pi/3$

17 VANIE DE

Choice of pseudorapidity observable

 Dijet pseudorapidity has tighter correlation with parton x compared to single jet pseudorapidity.

18

François Arleo and Jean-Philippe Guillet http://lapth.cnrs.fr/npdfgenerator/

Different η_{dijet} probes different effects with different x

Yaxian MAO Vanderbilt University

Dijet η v.s. forward calorimeter energy

IS2013, 10/09/2013, Illa da Toxa, Spain

Vanderbilt University

Dijet η v.s. forward calorimeter energy

IS2013, 10/09/2013, Illa da Toxa, Spain

Vanderbilt University

CMS PAS HIN-13-001

CMS PAS HIN-13-001

Summary from dijet η

CMS PAS HIN-13-001

- Mean of η_{dijet} increases v.s. forward calorimeter energy
- Width of η_{dijet} decreases v.s. forward calorimeter energy

Scaling in EMC region

Evolution of η shift vs HF energy in full η_{dijet}

IS2013, 10/09/2013, Illa da Toxa, Spain

23

 $\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$

Scaling in EMC region

Evolution of η shift vs HF energy in full η_{dijet}

Yaxian MAO Vanderbilt University

Scaling in EMC region

Evolution of η shift vs HF energy remains in "shadowing regime"

Summary

- Jet quenching:
 - No significant modification observed in dijet p_T ratio and azimuthal angle correlation in pPb collisions
 - A final state effect due to hot QCD medium produced in HI collisions
- Dijet pseudorapidity distributions:
 - Provide strong constraints for nPDF determination
 - Interesting trend in η_{dijet} v.s. forward calorimeter energy is observed in the shadowing and EMC regions
- More results to come in the future, please stay tuned!

Thanks for your attention!

backup

