COHERENCE EFFECTS BETWEEN INITIAL AND FINAL STATE RADIATION IN A DENSE QCD MEDIUM

Mauricio Martínez

N. Armesto, H. Ma, Y. Mehtar-Tani and C. Salgado arXiv:1308.2186

A hot and dense deconfined coloured medium (QGP) is produced in Ultrarelativistic Heavy Ion Collisions ⇒ Nuclear modifications to the fragmentation functions and PDFs

A hot and dense deconfined coloured medium (QGP) is produced in Ultrarelativistic Heavy Ion Collisions

 \Rightarrow Nuclear modifications to the fragmentation functions and

PDFs

Observables in HI Collisions are related to the properties of the QGP

- \Rightarrow Using pA to constrain nuclear PDFs
- ⇒ Assume no final state interactions. But....

Possible evidence of final state interactions in pA \Rightarrow Flow harmonics comparable to AA

Possible evidence of final state interactions in pA

 \Rightarrow Flow harmonics comparable to AA

QCD medium of finite size leads to color decoherence effects

- \Rightarrow Modifications to the hadronic outcome subsist for large pT
- \Rightarrow Jet quenching effects might be seen in pA

See K.Tywoniuk's talk

Shockwave k_T factorization Hybrid formalism Q_s

M. Martínez "Coherence effects between Initial and Final SR in a dense QCD medium"

DE COMPOSTELA

Color coherence in a DIS-like process

Color coherence: MC implementation and experimental evidence

A natural question

What happens in a QCD medium?

First steps: antenna inside a QCD medium

Medium modifications to the initial and final state interference pattern

N. Armesto, Hao Ma, M. Martinez, Yacine Mehtar-Tani, C. Salgado Dilute regime: PLB 717 (2012) 280-286 Dense regime: 1308.2186 \Rightarrow In this talk!!!

Medium modifications to the initial and final state interference pattern

N. Armesto, Hao Ma, M. Martinez, Yacine Mehtar-Tani, C. Salgado Dilute regime: PLB 717 (2012) 280-286 Dense regime: 1308.2186 \Rightarrow In this talk!!!

GOALS ★ Study another configuration relevant to HI collisions ★ Playground to investigate medium modifications to the Initial State Radiation

Classical Yang-Mills Eqs. I

Evolution of the gauge field:

$$\left[D_{\mu}, F^{\mu\nu}\right] = \mathcal{J}^{\nu}$$

Color charge conservation: $|D_{\mu}, \mathcal{J}^{\mu}| = 0$

Classical Yang-Mills Eqs. IEvolution of the gauge field: $\left[D_{\mu}, F^{\mu\nu}\right] = \mathcal{J}^{\nu}$ Color charge conservation: $\left[D_{\mu}, \mathcal{J}^{\mu}\right] = 0$ Linearizing around a background field: $\mathcal{A}^{\mu} = A^{\mu}_{med} + a^{\mu}$

$$\Box_x a^i - 2ig \left[\mathcal{A}_{med}^-, \partial_- a^i \right] = \mathcal{J}^i - \partial^i \left(\frac{\mathcal{J}^+}{\partial_-} \right) \quad \text{LC gauge}$$

Classical Yang-Mills Eqs. I Evolution of the gauge field: $|D_{\mu}, F^{\mu\nu}| = \mathcal{J}^{\nu}$ **Color charge conservation:** $|D_{\mu}, \mathcal{J}^{\mu}| = 0$ **Linearizing around a background field:** $\mathcal{A}^{\mu} = A^{\mu}_{med} + a^{\mu}$ $\Box_x a^i - 2ig \left[\mathcal{A}_{med}^-, \partial_- a^i \right] = \mathcal{J}^i - \partial^i \left(\frac{\mathcal{J}^+}{\partial_-} \right) \quad \text{LC gauge}$ Reduction formula: $\mathcal{M}^{a}_{\lambda} = \lim_{k^{2} \to 0} \int d^{4}x e^{ik \cdot x} \Box_{x} \mathcal{A}^{a}_{\mu}(x) \epsilon^{\mu}_{\lambda}(\vec{k})$

> UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Classical Yang-Mills Eqs. II

 <u>500000</u>

(0000000)

Eikonal parton in a background field:

$$\mathcal{J}^{\mu}(x)_{a} = g v^{\mu} \mathcal{U}^{ab}(x^{+}, 0) \,\delta^{3}(\vec{x} - \vec{v}t) \,\theta(t) \,Q_{b}$$

$$\mathcal{U}^{ab}(x^+, y^+) = \mathcal{P} \exp\left[ig \int_{y^+}^{x^+} dz^+ \mathcal{A}^-_{med}\left(z^+, \boldsymbol{r}(z^+)\right)\right]^{ab}$$

Soft gluon follows a non-eikonal trajectory

$$\mathcal{G}_{ab}(x^+, \mathbf{x}; y^+, \mathbf{y} | k^+) = \int_{\mathbf{r}(y^+)=\mathbf{y}}^{\mathbf{r}(x^+)=\mathbf{x}} \mathcal{D}\mathbf{r} \exp\left(i\frac{k^+}{2}\int_{y^+}^{x^+} dz \,\dot{\mathbf{r}}^2(z)\right) \mathcal{U}_{ab}(x^+, y^+)$$

Modeling the medium

Medium is described as a classical background field:

$$-\partial_{\mathbf{x}}^2 \mathcal{A}_{med}^-(x^+, \mathbf{x}) = \rho(x^+, \mathbf{x})$$

The distribution of color charges is considered to be a Gaussian noise:

$$\langle \mathcal{A}_{med}^{a,-}(x^+,\boldsymbol{q})\mathcal{A}_{med}^{*b,-}(x'^+,\boldsymbol{q}')\rangle = \delta^{ab}n(x^+)\delta(x^+-x'^+)\delta^{(2)}(\boldsymbol{q}-\boldsymbol{q}')\mathcal{V}^2(\boldsymbol{q})$$

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

BDMPS-Z + vacuum

BDMPS-Z + vacuum

DE SANTIAGO DE COMPOSTELA

PT broadening of ISR

BDMPS-Z + vacuum

Medium induced radiation is a two step process

- Quantum emission + classical broadening
- Scales with the length of the medium

Pt broadening of ISR

P⊤ broadening of ISR is a two step process:

- Collinear Emission + classical broadening
- Reshuffling of the momentum of the gluon emissions

 \Rightarrow Typical value of the gluon momenta $\sim Q_s = \hat{q}L$ T

Interferences

Interferences

Transverse size of the Quark-gluon system

- If hard scattering is the largest scale:
- \Rightarrow Insensitive to the medium
- If typical medium induced momentum is the largest scale
- \Rightarrow Medium is able to resolve the qg system

Interferences

The Color correlation of the Quark-gluon system is measured by

$$\mathcal{K}(x^{+}, \boldsymbol{x}; y^{+}, \boldsymbol{y} | k^{+}) = \int_{\boldsymbol{r}(y^{+}) = \boldsymbol{y}}^{\boldsymbol{r}(x^{+}) = \boldsymbol{x}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{y^{+}}^{x^{+}} d\xi \left(i\frac{k^{+}}{2}\dot{\boldsymbol{r}}^{2}(\xi) - \frac{1}{2}n(\xi)\sigma\left(\boldsymbol{r}(\xi)\right)\right)\right]$$

- Describes the Brownian motion of the gluon
- Harmonic oscillator approximation: $n\sigma({f r})pprox \hat{q}{f r}^2$
- Two extreme limits

 \Rightarrow High Energy Limit (Shockwave) $\tau_f \gg L$

 $\tau_f \ll L$

⇒"Infinite" medium length

Gluon spectrum: High Energy limit

- Medium acts as a unique scattering center
- Interferences are suppressed if $\mathbf{k} < Q_s$
- Vacuum color coherence is reestablished for $\mathbf{k} > Q_s$

Gluon spectrum: High Energy limit

- Medium acts as a unique scattering center
- Interferences are suppressed if $\mathbf{k} < Q_s$
- Vacuum color coherence is reestablished for $\mathbf{k} > Q_s$

Gluon spectrum: High Energy limit

- Medium acts as a unique scattering center
- Interferences are suppressed if $\mathbf{k} < Q_s$
- Vacuum color coherence is reestablished for $\mathbf{k} > Q_s$

Gluon spectrum: High Energy limit epeopope E S 0000000000000

- Medium acts as a unique scattering center
- Interferences are suppressed if $\mathbf{k} < Q_s$
- Vacuum color coherence is reestablished for $\mathbf{k} > Q_s$

Gluon spectrum: "Infinite" medium limit

- Interferences play a role at early-times
- Gluon loses vacuum coherence \Rightarrow Open phase space at large angle emissions up to $\theta_{max} = Q_s/\omega$
- Typical ``medium induced" gluon momentum ~ $Q_s = \hat{q}L$

We want:

 \Rightarrow Include finite target size effects !!!!

 \Rightarrow Study color decoherence in pA !!!!

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

We want:

 \Rightarrow Include finite target size effects !!!!

 \Rightarrow Study color decoherence in pA !!!!

• Projectile described by QCD parton model

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

We want:

- \Rightarrow Include finite target size effects !!!!
- \Rightarrow Study color decoherence in pA !!!!
- Projectile described by QCD parton model
- Target described by a gaussian distr. of color charges.

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

We want:

- \Rightarrow Include finite target size effects !!!!
- \Rightarrow Study color decoherence in pA !!!!
- Projectile described by QCD parton model
- Target described by a gaussian distr. of color charges.
- Emitted gluon follows a non-eikonal trajectory.

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

Factorized formula:

Finite medium size corrections + Color decoherence effects

$$\begin{split} &\omega \frac{dN}{d^{3}k} \sim \frac{g^{2}}{\pi^{2}} \int_{\mathbf{y}, \mathbf{z}, \bar{\mathbf{y}}, \bar{\mathbf{z}}, y^{+}, \bar{y}^{+}} e^{-i\mathbf{k}\cdot(\mathbf{z}-\bar{\mathbf{z}})} \frac{(\bar{\mathbf{z}}-\bar{\mathbf{y}})\cdot(\mathbf{z}-\mathbf{y})}{(\bar{\mathbf{z}}-\bar{\mathbf{y}})^{2}(\mathbf{z}-\mathbf{y})^{2}} \overset{\text{Probability to emit}}{\text{a soft gluon}} \\ &\left\{ \bar{\delta}_{0} \int_{\bar{\mathbf{z}}'} e^{-i\mathbf{k}\cdot(\bar{\mathbf{z}}-\bar{\mathbf{z}}')} \mathcal{G}^{\dagger}(L^{+}, \bar{\mathbf{z}}'; \bar{y}^{+}, \bar{\mathbf{z}}) \\ &- \mathcal{U}^{\dagger}(\bar{y}^{+}, 0, \bar{\mathbf{y}}) \left[\bar{\delta}_{L^{+}} - \frac{1}{ik^{+}} \int_{\bar{\mathbf{z}}'} e^{-i\mathbf{k}\cdot(\bar{\mathbf{z}}-\bar{\mathbf{z}}')} \tilde{\partial}^{\bar{\mathbf{z}}} \mathcal{G}^{\dagger}(L^{+}, \bar{\mathbf{z}}'; \bar{y}^{+}, \bar{\mathbf{z}}) \right] \right\}^{bd} \\ &\left\{ \delta_{0} \int_{\mathbf{z}'} e^{i\mathbf{k}\cdot(\mathbf{z}-\mathbf{z}')} \mathcal{G}(L^{+}, \mathbf{z}'; y^{+}, \mathbf{z}) & \overset{\text{Scattering probability of}}{\text{the partonic system}} \\ &- \left[\delta_{L^{+}} + \frac{1}{ik^{+}} \int_{\mathbf{z}'} e^{i\mathbf{k}\cdot(\mathbf{z}-\mathbf{z}')} \tilde{\partial}^{\mathbf{z}} \mathcal{G}(L^{+}, \mathbf{z}'; y^{+}, \mathbf{z}) \right] \mathcal{U}(y^{+}, 0, \mathbf{y}) \right\}^{dc} \\ &\left\langle \rho^{b}(\bar{\mathbf{y}}) \rho^{c}(\mathbf{y}) \rangle & \overset{\text{Projectile distribution}} \end{matrix} \right\}$$

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

Factorized formula:

Finite medium size corrections + Color decoherence effects

$$\begin{split} & \omega \frac{dN}{d^3k} \sim \frac{g^2}{\pi^2} \int_{\mathbf{y}, \mathbf{z}, \bar{\mathbf{y}}, \bar{\mathbf{z}}, y^+, \bar{y}^+} e^{-i\mathbf{k} \cdot (\mathbf{z} - \bar{\mathbf{z}})} \frac{(\bar{\mathbf{z}} - \bar{\mathbf{y}}) \cdot (\mathbf{z} - \mathbf{y})}{(\bar{\mathbf{z}} - \bar{\mathbf{y}})^2 (\mathbf{z} - \mathbf{y})^2} \\ \text{Probability to emit} \\ & \text{a soft gluon} \\ & \left\{ \overline{\delta_0} \int_{\bar{\mathbf{z}'}} e^{-i\mathbf{k} \cdot (\bar{\mathbf{z}} - \bar{\mathbf{z}'})} \mathcal{G}^{\dagger}(L^+, \bar{\mathbf{z}'}; \bar{y}^+, \bar{\mathbf{z}}) \right\} \\ & -\mathcal{U}^{\dagger}(\bar{y}^+, 0, \bar{\mathbf{y}}) \left[\overline{\delta_{L^+}} - \frac{1}{ik^+} \int_{\bar{\mathbf{z}'}} e^{-i\mathbf{k} \cdot (\bar{\mathbf{z}} - \bar{\mathbf{z}'})} \widetilde{\partial}^{\bar{\mathbf{z}}} \mathcal{G}^{\dagger}(L^+, \bar{\mathbf{z}'}; \bar{y}^+, \bar{\mathbf{z}}) \right] \right\}^{bd} \\ & \left\{ \delta_0 \int_{\mathbf{z}'} e^{i\mathbf{k} \cdot (\mathbf{z} - \mathbf{z}')} \mathcal{G}(L^+, \mathbf{z}'; y^+, \mathbf{z}) \\ & \left\{ \delta_0 \int_{\mathbf{z}'} e^{i\mathbf{k} \cdot (\mathbf{z} - \mathbf{z}')} \mathcal{G}(L^+, \mathbf{z}'; y^+, \mathbf{z}) \\ & -\left[\delta_{L^+} + \frac{1}{ik^+} \int_{\mathbf{z}'} e^{i\mathbf{k} \cdot (\mathbf{z} - \mathbf{z}')} \widetilde{\partial}^{\bar{\mathbf{z}}} \mathcal{G}(L^+, \mathbf{z}'; y^+, \mathbf{z}) \right] \mathcal{U}(y^+, 0, \mathbf{y}) \right\}^{dc} \\ & \left\{ \rho^b(\bar{\mathbf{y}}) \rho^c(\mathbf{y}) \right\} \\ & \text{Projectile distribution} \end{split}$$

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

Factorized formula:

Finite medium size corrections + Color decoherence effects

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

High Energy limit \Rightarrow k_T factorized formula

$$\begin{split} \omega \frac{dN}{d^3k} &\sim \frac{g^2}{\pi^2} \int_{\boldsymbol{y}, \boldsymbol{z}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{z}}} e^{i\boldsymbol{k}\cdot(\bar{\boldsymbol{z}}-\boldsymbol{z})} \frac{(\bar{\boldsymbol{z}}-\bar{\boldsymbol{y}}) \cdot (\boldsymbol{z}-\boldsymbol{y})}{(\bar{\boldsymbol{z}}-\bar{\boldsymbol{y}})^2 (\boldsymbol{z}-\boldsymbol{y})^2} \\ \text{Tr.} \left[\mathcal{U}_{\bar{\boldsymbol{z}}}^{\dagger} \mathcal{U}_{\boldsymbol{z}} + \mathcal{U}_{\bar{\boldsymbol{y}}}^{\dagger} \mathcal{U}_{\boldsymbol{y}} - \mathcal{U}_{\bar{\boldsymbol{z}}}^{\dagger} \mathcal{U}_{\boldsymbol{y}} - \mathcal{U}_{\bar{\boldsymbol{y}}}^{\dagger} \mathcal{U}_{\boldsymbol{z}} \right] \left\langle \rho^a(\bar{\boldsymbol{y}}) \rho^a(\boldsymbol{y}) \right\rangle \end{split}$$

This equation leads to the Hybrid Formalism See T.Altinoluk and A. Kovner; PRD83 (2011)105004

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

High Energy limit $\Rightarrow k_T$ factorized formula

$$\begin{split} \omega \frac{dN}{d^3k} &\sim \frac{g^2}{\pi^2} \int_{\boldsymbol{y}, \boldsymbol{z}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{z}}} e^{i\boldsymbol{k} \cdot (\bar{\boldsymbol{z}} - \boldsymbol{z})} \frac{(\bar{\boldsymbol{z}} - \bar{\boldsymbol{y}}) \cdot (\boldsymbol{z} - \boldsymbol{y})}{(\bar{\boldsymbol{z}} - \bar{\boldsymbol{y}})^2 (\boldsymbol{z} - \boldsymbol{y})^2} \\ & \text{Tr.} \left[\mathcal{U}_{\bar{\boldsymbol{z}}}^{\dagger} \mathcal{U}_{\boldsymbol{z}} + \mathcal{U}_{\bar{\boldsymbol{y}}}^{\dagger} \mathcal{U}_{\boldsymbol{y}} - \mathcal{U}_{\bar{\boldsymbol{z}}}^{\dagger} \mathcal{U}_{\boldsymbol{y}} - \mathcal{U}_{\bar{\boldsymbol{y}}}^{\dagger} \mathcal{U}_{\boldsymbol{z}} \right] \left\langle \rho^a(\bar{\boldsymbol{y}}) \rho^a(\boldsymbol{y}) \right\rangle \end{split}$$

This equation leads to the Hybrid Formalism See T.Altinoluk and A. Kovner; PRD83 (2011)105004

To do list (Keep tuned !!!!)

- Determine the dominant logarithmic behavior:
 - \Rightarrow Identify the "medium" induced elastic and inelastic terms.
- Make contact and generalize hybrid formalism.

Work in progress (Altinoluk, Armesto, Beuf, Martinez, Salgado)

Conclusions

- Interference pattern between the initial and final SR is indeed affected in the presence of a QCD medium.
- We observe a partial color decoherence between both emitters
 - ⇒ Opening of phase space for large angle emissions
- We can generalize this setup for pA (work in progress)
 ⇒ phenomenological consequences at LHC (keep tuned!!!)

BACKUP SLIDES

Correlators

Quark-gluon dipole

$$\frac{1}{N_c^2 - 1} \langle \mathcal{G}(x^+, \mathbf{x}; y^+, \mathbf{y}) \mathcal{U}^{\dagger}(x^+, y^+) \rangle = \mathcal{K}(x^+, \mathbf{x}; y^+, \mathbf{y} | k^+)$$
$$\mathcal{K}(x^+, \mathbf{x}; y^+, \mathbf{y} | k^+) = \int_{\mathbf{r}(y^+) = \mathbf{y}}^{\mathbf{r}(x^+) = \mathbf{x}} \mathcal{D}\mathbf{r} \exp\left[\int_{y^+}^{x^+} d\xi \left(i\frac{k^+}{2}\dot{\mathbf{r}}^2(\xi) - \frac{1}{2}n(\xi)\sigma\left(\mathbf{r}(\xi)\right)\right)\right]$$

Gluon dipole

$$\int d\mathbf{x} \, d\mathbf{x}' e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{x}')} \frac{1}{N_c^2 - 1} \langle \mathcal{G}(x^+, \mathbf{x}; y^+, \mathbf{y}) \mathcal{G}^{\dagger}(x^+, y^+) \rangle = \mathcal{S}(x^+, y^+, \mathbf{x} - \mathbf{y})$$

$$\mathcal{S}(x^+, y^+; \boldsymbol{x} - \boldsymbol{y}) = \exp\left[-\frac{1}{2}\int_{y^+}^{x^+} d\xi \, n(\xi) \, \sigma(\boldsymbol{x} - \boldsymbol{y})\right]$$

Dipole cross section

$$\sigma(\boldsymbol{r}) = \int \frac{d^2 \boldsymbol{q}}{(2\pi)^2} \mathcal{V}(\boldsymbol{q}) \left[1 - \cos(\boldsymbol{r} \cdot \boldsymbol{q})\right]$$

Scattering amplitude from CYM Eqs.

Incoming parton

$$\mathcal{M}^{a}_{\lambda,bef}(\vec{k}) = \frac{g}{k^{+}} \int_{x^{+}=\infty} d^{2}x \, e^{i(k^{-}x^{+}-k\cdot x)} \int_{-\infty}^{0} dy^{+} e^{ik^{+}u^{-}y^{+}}$$

$$\times \epsilon_{\lambda} \cdot \left(i\partial_{y} + k^{+}u\right) \mathcal{G}_{ab}\left(x^{+}, x, y^{+}, y = uy^{+}|k^{+}\right) Q_{b}^{in} \quad \stackrel{\rho}{\rho}$$

Leading logs and AO

