Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n	vn distributions	Correlations	Conclusions
	000	0000000	00000	00000000000	0	

Hydrodynamic response to initial state fluctuations

Harri Niemi

University of Jyväskylä, Department of Physics

IS2013 - Illa da Toxa 11.9.2013

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n	vn distributions	Correlations	Conclusions
	000	0000000	00000	00000000000	0	

AA-collisions

- Initial particle/energy production, followed by
- Hydrodynamic evolution, followed by
- Freeze-out/Hadron cascade
- Goal is to determine QGP properties: EoS, transport coefficients
- Large(st) uncertainty in determining e.g. shear viscosity is initial state for hydrodynamic evolution

Complicated (and necessary) problem is to determine initial conditions simultaneously with QGP properties

Introduction	Hydrodynamics	Initial state	Correlation between en and vn	vn distributions	Correlations	Conclusions
	000	0000000	00000	00000000000		
Hydrody	/namics					

Conservation laws

$$\partial_{\mu} T^{\mu\nu} = 0$$

 $\partial_{\mu} n_i^{\mu} = 0$
 $T^{\mu\nu} = e u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$

IS equations for viscous parts of $T^{\mu\nu}$

e.g. shear viscosity:

$$\tau_{\pi} \frac{d}{d\tau} \pi^{\langle \mu\nu\rangle} + \pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu\rangle} + \cdots$$

To solve this set of equations we need

- Equation of state p = p(e) and T = T(e)
- Initial condition $T^{\mu
 u}(au_0,\mathbf{x})$
- Transport coefficients, e.g. shear viscosity $\eta(T)$, relaxation time $\tau_{\pi}(T)$, ...

э

• Cooper-Frye freeze-out for particle i = calculate number of particles crossing the freeze-out hypersurface

$$egin{aligned} & E \, rac{dN}{d^3 \mathbf{p}} = rac{g_i}{(2\pi)^3} \int d\sigma^\mu p_\mu f_i(\mathbf{p}, \mathbf{x}) \ & + ext{ decays} \end{aligned}$$

\sim 300 hadronic states: takes most of the computing time

э

< ∃ >

Introduction	Hydrodynamics	Initial state	Correlation between en and vn	vn distributions	Correlations	Conclusions
	000					
Characte	erizing p_T -s	pectra				

Fourier decomposition: w.r.t. event plane

$$\frac{\mathrm{d}N}{\mathrm{d}y\mathrm{d}p_T^2\mathrm{d}\phi} = \frac{\mathrm{d}N}{\mathrm{d}y\mathrm{d}p_T^2} \left[1 + 2v_1(p_T)\cos\left(\phi - \psi_1\right) + 2v_2(p_T)\cos\left[2\left(\phi - \psi_2\right)\right] + \cdots\right]$$
$$\psi_n = (1/n)\arctan\left(\langle p_T\sin n\phi \rangle / \langle p_T\cos n\phi \rangle\right)$$

•
$$v_n(p_T)$$
, $\psi_n(p_T)$, dN/dy , ... characterize single event

Ensemble of events: Full characterization

- Averages: $\langle v_n \rangle$, $\langle \psi_n \rangle$, ...
- Probability distributions: $\mathcal{P}(v_n)$, $\mathcal{P}(\psi_n)$, ...
- Correlations: $\langle v_n, v_m \rangle$, $\langle \psi_n, \psi_m \rangle$, ...

< 臣 → 臣

Introduction	Hydrodynamics	Initial state ●○○○○○○	Correlation between en and vn 00000	vn distributions	Correlations	Conclusions
Characte	erizing initia	al state				

Eccentricity (for energy density ε)

$$\epsilon_{m,n} = -\frac{\int \mathrm{d}x\mathrm{d}y \; r^m \cos\left[n\left(\phi - \Psi_{m,n}\right)\right]\varepsilon\left(x, y, \tau_0\right)}{\int \mathrm{d}x\mathrm{d}y \; r^m\varepsilon\left(x, y, \tau_0\right)}$$
$$\Psi_{m,n} = \frac{1}{n} \arctan\frac{\int \mathrm{d}x\mathrm{d}y \; r^m \sin\left(n\phi\right)\varepsilon\left(x, y, \tau_0\right)}{\int \mathrm{d}x\mathrm{d}y \; r^m \cos\left(n\phi\right)\varepsilon\left(x, y, \tau_0\right)} + \pi/n$$

• $e_{m,n}$, $\Psi_{m,n}$ characterize single event (initial energy density)

Ensemble of events (initial conditions): Full characterization

- Averages: $\langle e_{m,n} \rangle$, $\langle \Psi_{m,n} \rangle$, ...
- Probability distributions: $\mathcal{P}(e_{m,n})$, $\mathcal{P}(\Psi_{m,n})$

• Correlations:
$$\langle e_{m,n}, e_{m',n'} \rangle$$
, $\langle \Psi_{m,n}, \Psi_{m',n'} \rangle$, ...

э

Introduction Hydrodynamics

Initial state ○●○○○○○

Correlation between e_n and v_n 00000 v_n distributions Correlations

Conclusions

Bessel-Fourier expansion: S. Floerchinger, U. Wiedemann: arXiv:1307.7611 [hep-ph]

$$w_l^{(m)} = \frac{2}{R^2 \left[J_{m+1}(k_l^{(m)}R) \right]^2} \int_0^R dr \, r \, w^{(m)}(r) \, J_m\left(k_l^{(m)}r\right)$$

$$\begin{aligned} w_{\text{reco}(N_m,N_l)}(r,\phi) &= \sum_{l=1}^{N_l} w_l^{(m=0)} J_0\left(z_l^{(0)}r/R\right) \\ &+ 2\sum_{m=1}^{N_m} \sum_{l=1}^{N_l} |w_l^{(m)}| \cos\left[m\left(\phi - \varphi_l^{(m)}\right)\right] J_m\left(z_l^{(m)}r/R\right) \end{aligned}$$

Harri Niemi Hydrodynamic response to initial state fluctuations

Introduction	Hydrodynamics	Initial state	Correlation between e _n and v _n	v _n distributions	Correlations	Conclusions
Connecti	ng initial c	ondition t	to hadron spectra			

Ensemble of events (initial conditions): Full characterization

- Averages: $\langle e_{m,n} \rangle$, $\langle \Psi_{m,n} \rangle$, ...
- Probability distributions: $\mathcal{P}(e_{m,n})$, $\mathcal{P}(\Psi_{m,n})$
- Correlations: $\langle e_{m,n}, e_{m',n'} \rangle$, $\langle \Psi_{m,n}, \Psi_{m',n'} \rangle$, ...

Hydrodynamic response (EoS, η/s , T_{dec} , ...)

Ensemble of events (spectra): Full characterization

- Averages: $\langle v_n \rangle$, $\langle \psi_n \rangle$, ...
- Probability distributions: $\mathcal{P}(v_n)$, $\mathcal{P}(\psi_n)$, ...
- Correlations: $\langle v_n, v_m \rangle$, $\langle \psi_n, \psi_m \rangle$
- Problem is that typically the connections depend on the full details of the space-time evolution...

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n	vn distributions	Correlations	Conclusions
	000	0000000	00000	00000000000	0	

$e_n - v_n$ correlation

문 🕨 문

Introduction	Hydrodynamics	Initial state ○○○○●○○	Correlation between e _n and v _n 00000	v _n distributions	Correlations	Conclusions
Correlati	on coefficie	ent				

How are v_n 's and ϵ_n 's related? • $\langle v_n \rangle \propto \epsilon_n$

• $v_n \propto \epsilon_n$

Measure by linear correlation coefficient:

$$c(a,b) = \left\langle \frac{\left(a - \langle a \rangle_{ev}\right) \left(b - \langle b \rangle_{ev}\right)}{\sigma_a \sigma_b}
ight
angle_{ev}$$

- c = 0 no (linear) correlation
- c = 1(-1) fully (anti-)correlated

Introduction	Hydrodynamics	Initial state ○○○○○●○	Correlation between e_n and v_n 00000	v _n distributions	Correlations	Conclusions
$e_n - v_n$ o	correlation					

F. G. Gardim, F. Grassi, M. Luzum and J. -Y. Ollitrault, Nucl. Phys. A904-905 2013, 503c (2013)

- v₂ and v₃ strongly correlated to the corresponding eccentricities
- Higher harmonics: no correlation (except in central collisions)

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n	v _n distributions	Correlations	Conclusions		
	000	0000000	00000	00000000000				
Monte-(Monte-Carlo Glauber							

$$s(x,y) = W \sum_{i=1}^{N_{\text{part,bin}}} \exp\left\{-\left[(x-x_i)^2 + (y-y_i)^2\right] / (2\sigma^2)\right\}$$

- (x_i, y_i) position of wounded nucleon or binary collision
- W normalization constant
- Centrality selection according to N_{bin} or N_{part}

$$p_T$$
-spectra for each event $\frac{dN}{dydp_T^2 d\phi}\Big|_{ev}$

э

2d histogram \sim 2000 hydro events per case

sBC $\eta/s = 0$

sBC $\eta/s = 0.16$

sWN $\eta/s = 0.16$

Harri Niemi

sBC
$$\eta/s = 0$$

sBC $\eta/s = 0.16$

Harri Niemi Hydrodynamic response to initial state fluctuations

sWN $\eta/s = 0.16$

ㅋ ㅋ

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	v _n distributions	Correlations	Conclusions
v_4 vs ϵ_4						

0 - 5 %

Harri Niemi Hydrodynamic response to initial state fluctuations

Do $v_n(p_T)$ correlate with different $\epsilon_{m,n}$ at different p_T 's ($\epsilon_{m,n}$ with different r^m weight)

- $v_2(p_T)$: not really.
- $v_3(p_T)$: kind of, but rather weak difference

Introduction	Hydrodynamics	Initial state	Correlation between en and vn	vn distributions	Correlations	Conclusions
	000	0000000	0000	00000000000	0	

v_n distributions

æ

Introduction	Hydrodynamics	Initial state	Correlation between <i>e_n</i> and <i>v_n</i> 00000	v _n distributions ○●○○○○○○○○○○	Correlations	Conclusions
<i>v</i> n distrik	outions					

- Full description of heavy-ion collisions should also get distributions of v_n correct (not only event averaged value)
- Each case gives different probability distribution

Each type of initial state and η/s gives different distribution of $v_n{'}{\rm s},$ but if we introduce scaled variable

$$\delta v_n = rac{v_n - \langle v_n \rangle_{ ext{ev}}}{\langle v_n \rangle_{ ext{ev}}}, \quad ext{and} \quad \delta \epsilon_n = rac{\epsilon_n - \langle \epsilon_n \rangle_{ ext{ev}}}{\langle \epsilon_n \rangle_{ ext{ev}}}.$$

• Probability distributions of δv_2 and δv_3 independent of hydrodynamic evolution, and follow the corresponding δe_n distribution.

HN, Denicol, Holopainen and Huovinen, Phys. Rev. C 87, 054901 (2013), arXiv:1212.1008 [nucl-th]

Same result if we change between the Glauber variants (sBC or sWN):

э.

v_n distibutions (central collisions)

イロト イポト イヨト イヨト

э

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n 00000	v _n distributions 00000●00000	Correlations	Conclusions
<i>v</i> ₂ distib	utions					

$$\mathcal{P}(\delta \mathbf{v}_2) = \mathcal{P}(\delta \epsilon_2) \\ \mathcal{P}(\delta \mathbf{v}_3) = \mathcal{P}(\delta \epsilon_3)$$

(probes initial condition directly)

and what is this good for...

э

Two different Glauber limits give the same distribution, but ...

Initial conditions from A. Dumitru

- For example different variations of MC-KLN model give clearly different δv_2 distributions
- δv₂ distributions can distinguish between the initial state models (without doing a single hydrodynamic calculation)

Introduction	Hydrodynamics	Initial state	Correlation between e_n and v_n	vn distributions	Correlations	Conclusions
				0000000000000		

Can we save the Glauber model...

v_n distibutions: Tuning MC-Glauber model

Different distributions of nucleons (or quarks): CQS = constitutient quark scaling, HS = hard sphere

Thorsten Renk and HN

Introduction Hydrodynamics Initial state Correlation between e_n and v_n v_n distributions Correlations Conclusions 000000 00000 0 0

vn distibutions: Tuning MC-Glauber model

Change the width of the Gaussian peaks, multiplicity fluctuations (normalization),...

5-10% centrality

Thorsten Renk and HN

012302 (2013)

Harri Niemi Hydrodynamic response to initial state fluctuations

Introduction	Hydrodynamics	Initial state	Correlation between e _n and v _n 00000	v _n distributions	Correlations •	Conclusions
(v_i, v_i) of	correlations					

	$c(\epsilon_2,\epsilon_3)$	$c(v_2, v_3)$	$c(\epsilon_2, \epsilon_4)$	$c(v_2, v_4)$	$c(\epsilon_3,\epsilon_4)$	$c(v_3, v_4)$
sBC $\eta/s = 0.0$	-0.09	-0.11	0.26	0.32	-0.03	-0.11
sBC $\eta/s = 0.16$	-0.09	-0.11	0.25	0.63	-0.03	-0.09
sWN $\eta/s = 0.16$	-0.15	-0.14	-0.04	0.42	0.03	-0.11

æ

ъ

Introduction	Hydrodynamics	Initial state	Correlation between e _n and v _n 00000	v _n distributions	Correlations	Conclusions
Conclusi	ons					

- v_2 and v_3 linearly correlated to corresponding eccentricities (v_2 event-by-event)
- Correlation between v_4 and e_4 depends strongly on the details of fluid dynamics
- Distributions $P(\delta v_2)$ follow directly from the initial conditions (details of the fluid dynamical evolution do not matter)
- Clear constraints for the initial condition (without doing a single hydro run)
- (v_i, v_j) correlations provide additional information, but not as easy as the distributions