Identified particle production in p-Pb measured with the ALICE detector

Peter Christiansen
(Lund University)

for the ALICE Collaboration
Outline

• Introduction
• Particle IDentification (PID) with ALICE
• Measurements of p_T spectra of $\pi, K, K^0_S, \rho, \text{and } \Lambda$
• Theory motivated interpretations
• Data driven interpretation
• Discussion
• Conclusions
A simple pre-LHC physics picture of different colliding systems

<table>
<thead>
<tr>
<th></th>
<th>Inelastic pp</th>
<th>Pb-Pb</th>
<th>Inelastic p-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial interactions</td>
<td>Color transfer between partons</td>
<td>Interactions between dense gluon fields</td>
<td>Dense gluon fields (Pb) probed by partons (p)</td>
</tr>
<tr>
<td></td>
<td>Multi Parton Int.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold Nuclear Matter</td>
<td>No</td>
<td>Yes (e.g. J/Psi ”absorption”)</td>
<td>Yes</td>
</tr>
<tr>
<td>Hot Nuclear Matter</td>
<td>No</td>
<td>Hydrodynamic expansion, quenching, quarkonia dissociation,</td>
<td>No</td>
</tr>
<tr>
<td>Hadronization (Chemical freezeout)</td>
<td>String breaking MPI: color reconnection</td>
<td>Statistical model</td>
<td>Closer to pp</td>
</tr>
<tr>
<td>Kinetic freezeout</td>
<td>No</td>
<td>Hadronic rescattering</td>
<td>No</td>
</tr>
</tbody>
</table>

Pre-LHC questions for p-Pb physics:
Are the dense gluon fields well described by CGC?
What is the magnitude of cold nuclear matter effects?
Using Particle IDentification to study the double ridge

Pion-hadron correlations

Proton-hadron correlations

See talk by Paul Kujier

Using Particle IDentification to study the double ridge

• Clear mass ordering

Fourier coefficients:

See talk by Paul Kujier

New questions for p-Pb collisions

- What is the origin of the double ridge structure observed in p-Pb collisions?
 - Initial state effects? (CGC?)
 - Formation of collective medium? (hydrodynamics?)
 - Is this a Hot or “Cold” QCD effect?
 - Alternative explanation?
- Strong indications for a coming paradigm change!
- Question: what can we learn from bulk production of identified particles?
 - Are there indications for final state effects such as radial flow?
ALICE: trigger and multiplicity

\[p \quad \longleftrightarrow \quad Pb \quad (y_{CM} = y_{LAB} + 0.465) \]

- VZERO used for triggering and multiplicity (A side)
- Fluctuations in the number of hard scatterings are important because of the small number of participants \(\Rightarrow \) weaker multiplicity vs. impact parameter correlation than in Pb-Pb

See talk by Alberica Toia
ALICE: tracking and PID

\[p \rightarrow \rightarrow Pb \quad (\gamma_{CM} = \gamma_{LAB} + 0.465 \rightarrow) \]

- Detectors used in this analysis
 - Inner Tracking System (tracking, PID)
 - Time Projection Chamber (tracking, PID)
 - Time Of Flight (PID)
Identification of primary tracks

p-Pb event display
\(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
Spectra of π, K, p in p-Pb collisions

- Rapidity interval $0 < y_{CM} < 0.5$
- Dashed lines are individual blast-wave fits
Topological identification of V^0_ss

$K^0_S \rightarrow \pi^+ + \pi^-$

$\Lambda \rightarrow p + \pi^-$
Spectra of K^0_S and Λ in p-Pb collisions

- Rapidity interval $0 < y_{CM} < 0.5$
- Dashed lines are individual blast-wave fits

ρ_T coverage:
- π: $0.2 < \rho_T < 3.0$ GeV/c
- K: $0.25 < \rho_T < 2.5$ GeV/c
- K^0_S: $0.0 < \rho_T < 8.0$ GeV/c
- p: $0.45 < \rho_T < 4.0$ GeV/c
- Λ: $0.6 < \rho_T < 8.0$ GeV/c
Features of the data

- Characteristic evolution of p/π and Λ/\bar{K}^0_S with multiplicity is reminiscent of Pb-Pb where it is believed to be due to radial flow
- NB! The solid boxes for p-Pb ratios indicate the uncorrelated systematic error
 \Rightarrow the relative trend can be measured rather precisely

Integrated particle ratios and $<p_T>$ will be covered by Francesco Barile
Which models can capture these features?

- **Models**
 - Blast-wave (next slides)
 - EPOS LHC (full event generator including hydro)
 - Krakow (hydro calculation focused on low p_T)
 - DPMJet (PHOJET pp + nuclei via Glauber-Gribov theory)

- Only models which employ hydrodynamics can describe the p_T spectra
A blast wave study of the data

p-Pb 0-5%

- Simultaneous fits
 \(\pi: 0.5 < p_T < 1.0 \text{ GeV/c} \)
 \(K: 0.2 < p_T < 1.5 \text{ GeV/c} \)
 \(pp: 0.3 < p_T < 1.5 \text{ GeV/c} \)
 \(p: 0.3 < p_T < 3.0 \text{ GeV/c} \)
 \(pp: 0.5 < p_T < 2.5 \text{ GeV/c} \)

- Adding
 \(K^0_S \) (0.0 < \(p_T \) < 1.5 GeV/c)
 and
 \(\Lambda \) (0.6 < \(p_T \) < 2.0 GeV/c)
 does not significantly change extracted parameters

\[
\frac{dN}{p_\perp dp_\perp} \propto \int_0^R \int_0^\infty \frac{r \, dr \, m_\perp I_0 \left(\frac{p_\perp \sinh \rho}{T_{\text{kin}}} \right) K_1 \left(\frac{m_\perp \cosh \rho}{T_{\text{kin}}} \right)}{T_{\text{kin}}} \]

\[
\rho = \tanh^{-1} \beta_T
\]

\[
\beta_T = \beta_S (r/R)^n
\]

\[
\langle \beta_T \rangle = \frac{2}{2+n} \beta_S
\]
A blast wave study of the data

The description of p-Pb and pp data by the blast-wave fit is reasonable without being excellent
A blast wave study of the data

The p_T region where the blast-wave fit describes the data is in general broader for Pb-Pb
Summarizing the results from the blast-wave studies

There is a strong common trend between the parameters extracted from Pb-Pb and p-Pb
Summarizing the results from the blast-wave studies

Even the pp data seems to follow the same trend!
It seems that if we ascribe the change in spectral shape to radial flow in p-Pb then the same can be done in pp.
Summarizing the results from the blast-wave studies

BUT also simulated PYTHIA8 pp events follow a qualitatively similar trend when Color Reconnection (CR) is enabled. CR has been shown to mimic radial flow but without requiring the formation of a medium [Ortiz et al, PRL111, 042001 (2013)]

⇒ No unique theoretical interpretation of hydro/medium
⇒ Can we learn more in another way?
Data driven approach

- Fit the evolution of the p/π ratio with $dN/d\eta$ in each p_T interval with a power law function: $y = Ax^B$
Data driven approach

- Fit the evolution of the p/π ratio with $dN/d\eta$ in each p_T interval with a power law function: $y = Ax^B$
- Compare the extracted exponents B

arXiv:1307.6796
Similar studies with Λ/K^0_S

- Using Λ/K^0_S allows one to extend the p_T range to cover also the region of the baryon peak ($p_T \sim 3\text{GeV}/c$) where the scaling also seems to hold.
The way the multiplicity is defined in pp biases the p/π ratios (significantly more than the Λ/K^0_S)

The evolution of $\Lambda/K^0_S (p/\pi)$ with $dN/d\eta$ is similar for all 3 (2) systems

⇒ surprising suggestive pattern that similar physics is driving the ratios for all systems and for all sizes (no evidence for an onset in $dN/d\eta$)
.... but it also raises additional questions

• Is the scaling in particle ratios and dN/d\(\eta \) meaningful?
 – They do not appear to be particularly fundamental quantities in e.g. a hydro model?

• What is the role of the initial geometry?
 – For pp and p-Pb it is limited by proton area suggesting a weak multiplicity dependence of the initial area
 While for Pb-Pb the nuclear overlap has a strong multiplicity dependence

• How does the absolute dN/d\(\eta \) affect this?
 – Varying e.g. the center of mass energy?

• Have a look at the last two questions here
Geometry: is the Pb-Pb centrality evolution described by hydro?

- Near ideal hydrodynamics with some implementation of the hadronic phase describes well p_T spectra in central collisions
Geometry: is the Pb-Pb centrality evolution described by hydro?

- The same models fail to describe the p_T spectra in peripheral collisions.
- Typically hydro has not been expected to work in peripheral collisions but if it is at work in p-Pb and pp collisions should it not work there?

$1/N_{ev} 1/(2\pi p_T) d^2 N/ dp_T dy$ (GeV/c)^2

$\pi^+ + \pi^-$

$K^+ + K^-$

$\bar{p} + p$
How does varying $\sqrt{s_{NN}}$ affect the ratios?

At RHIC Λ-bar / Λ \sim 0.8.

In the statistical model for fixed T and $\mu_B << T$ one expects $(\Lambda+\Lambda$-bar)/K^0_s to be insensitive to μ_B.

So if the underlying ratios are similar we expect LHC ratios to lie between RHIC ratios.

- For peripheral events (blue points) the ratios are similar while for central events (red points) there is a clear difference.

- The absolute increase of $dN/d\eta$ from RHIC to LHC is \sim2.1 in both centrality classes.

\Rightarrow Different scaling at RHIC and LHC.

\Rightarrow The smaller peripheral system seems less responsive to the increase in energy density.

Is this consistent with hydrodynamics in small systems?
Conclusions

- The p_T spectra of π, K, K^0_s, p, and Λ as a function of multiplicity in p-Pb were reported.
- These p-Pb spectra show similar trends as associated with radial flow in Pb-Pb:
 - Spectra are best described by models incorporating a hydrodynamical phase
 - Blast-wave analysis shows similar multiplicity dependence as in Pb-Pb
 - The evolution of particle ratios with p_T and multiplicity seems to follow the same trend across all collision systems
- Taken together there are strong indications for final state effects in both p-Pb (and pp), but some uncertainty as to whether this is hydrodynamical or due to another mechanism
Backup slides
7 TeV pp spectra vs mult
7 TeV pp ratios vs mult

Identified particles in p-Pb by ALICE (P. Christiansen, Lund)
The double ridge in p-Pb collisions

- Double ridge structure
- Reminiscent of azimuthal flow in Pb-Pb collisions
Sum of particles and antiparticles

- At lower CM energies Λ-bar/ $\Lambda << 1$.
- In the statistical model (neglecting feeddown):
 - $N_\Lambda \propto e^{+\mu B/T} * e^{-m/T}$
 - $N_{\Lambda\text{-bar}} \propto e^{-\mu B/T} * e^{-m/T}$
- When $\mu_B << T$:
 - $N_\Lambda + N_{\Lambda\text{-bar}} \propto (1 + \mu B/T + 1 - \mu B/T) * e^{-m/T} \sim 2*e^{-m/T}$
- So $(N_\Lambda + N_{\Lambda\text{-bar}})/(2*NK^0_s)$ is roughly independent of μ_B.