The role of the glasma and hydrodynamics for azimuthal anisotropies in nuclear collisions

Björn Schenke
Physics Department, Brookhaven National Laboratory, Upton, NY, USA

IS2013
International Conference on the Initial Stages in High-Energy Nuclear Collisions
Illa da Toxa, Galicia
September 11 2013
Brief outline

- Gluon saturation and initial glasma state (IP-Glasma model)
- Flow and fluctuations in heavy-ion collisions
- Multiplicity in pp and pA collisions
- Azimuthal anisotropy in pA and dA collisions
Introduction: Gluon saturation

Towards higher energy / smaller x: gluons split, number increases:

BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation describes x-evolution but violates unitarity: cross-sections grow without bound

JIMWLK (Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner) and BK (Balitsky, Kovchegov) equations include non-linear evolution \rightarrow saturation

$p_T \lesssim$ saturation scale $Q_s(x)$:

- strong saturated fields $A_\mu \sim 1/g$
- occupation numbers $\sim 1/\alpha_s$
- \Rightarrow classical field approximation

Evolution equations determine $Q_s(x)$

$x = \text{longitudinal momentum fraction of partons in a hadron or nucleus}$

McLerran and Venugopalan, Phys.Rev. D49 (1994) 2233-2241
Saturation model for the color charge density

Energy and impact parameter b dependence of $Q_s(x, b)$ can be modeled in the **IP-Sat model** Kowalski, Teaney, Phys.Rev. D68 (2003) 114005

Parametrize cross sections for DIS on protons and fit to HERA diffractive data $\rightarrow Q_s(x, b)$

For a nucleus sample nucleon positions and add all T_p

$$\frac{d\sigma_{\text{dip}}^p}{d^2x_\perp} (r_\perp, x, x_\perp) = 2 \mathcal{N}(r_\perp, x, x_\perp) = 2 \left[1 - \exp \left(-\frac{\pi^2}{2N_c} r_\perp^2 \alpha_s(Q^2) x g(x, Q^2) \sum_{i=1}^A T_p(x_\perp - x_{T,i}) \right) \right]$$

then determine $Q_s(x, x_\perp)$ ($\mathcal{N}(1/Q_s(x, x_\perp), x, x_\perp) = 1 - e^{-1/2}$)

Color charge density $g\mu(x, x_\perp)$ is proportional to $Q_s(x, x_\perp)$
Sample color charges ρ^a from local Gaussian for each nucleus

$$\langle \rho^a(x_\perp) \rho^b(y_\perp) \rangle = \delta^{ab} \delta^2(x_\perp - y_\perp) g^2 \mu^2(x_\perp)$$

Color charges determine incoming color currents:

$$J_1^\nu = \delta^{\mu+} \rho_1(x^-, x_\perp)$$

$$[D_\mu, F^{\mu\nu}] = J_1^\nu$$

$$J_2^\nu = \delta^{\mu-} \rho_2(x^+, x_\perp)$$

$$[D_\mu, F^{\mu\nu}] = J_2^\nu$$

Solve Yang-Mills equations for the gauge fields $A^+(x^-, x_\perp) = -\frac{g \rho(x^-, x_\perp)}{\nabla_\perp^2 + m^2}$

Wilson line correlator shows degree of fluctuations in the gluon fields:
Fluctuation scale: $1/Q_s$
IP-Glasma: Gauge fields after the collision

Initial condition on the lightcone:

\[A_\mu^{(1)} A_\mu^{(2)} A_\mu^{(3)} = 0 \]

Configuration in Schwinger gauge \(A^\tau = 0 \)

Solution:

\[
A^i_{(3)} |_{\tau=0} = A^i_{(1)} + A^i_{(2)} \\
A^\eta_{(3)} |_{\tau=0} = \frac{ig}{2} [A^i_{(1)}, A^i_{(2)}]
\]

We solve for the gauge fields numerically

Time evolution follows Yang-Mills equations
Compute energy density in the fields at $\tau = 0$
and later times with CYM evolution

for comparison:

arbitrary units
same nucleon positions in both events, impact parameter $b=4$ fm

Compute energy density in the fields at $\tau = 0$
and later times with CYM evolution

for comparison:

arbitrary units
same nucleon positions in both events, impact parameter $b=4$ fm
\(\frac{dN_g}{dy} \) in transverse Coulomb gauge \(\partial_i A^i = 0 \)

\(N_{\text{part}} \) from MC-Glauber with \(\sigma_{NN} = 42 \text{ mb} \) and \(64 \text{ mb} \) respectively

Running coupling \(\alpha_s \left(\langle Q_s^{\text{max}} \rangle \right) \)

Normalized to RHIC data
IP-Glasma model gives a convolution of negative binomial distributions
No need to put them in by hand
Yang-Mills + viscous fluid-dynamic evolution

Energy density and initial flow velocity from $u_{\mu}T_{YM}^{\mu\nu} = \varepsilon u^\nu$
as input for fluid-dynamic simulation

Yang-Mills evolution
Yang-Mills + viscous fluid-dynamic evolution

Energy density and initial flow velocity from $u_\mu T_{YM}^{\mu\nu} = \varepsilon u^\nu$ as input for fluid-dynamic simulation
Yang-Mills + viscous fluid-dynamic evolution

Energy density and initial flow velocity from $u_{\mu} T_{YM}^{\mu\nu} = \varepsilon u^{\nu}$ as input for fluid-dynamic simulation

Viscous flow at RHIC and LHC

RHIC $\eta/s = 0.12$

LHC $\eta/s = 0.2$

Lower effective η/s at RHIC than at LHC needed to describe data
Hints at increasing η/s with increasing temperature
Analysis at more energies can be used to gain information on $(\eta/s)(T)$

Experimental data:
Learning about QCD

Example: extraction of $(\eta/s)(T)$

Graph showing the approximate range of maximal initial temperatures probed by RHIC and the AdS/CFT limit. The graph also indicates possible temperature dependence and the approximate range of maximal initial temperatures probed by LHC.
Temperature dependent η/s

Use $\eta/s(T)$ as in Niemi et al., Phys.Rev.Lett. 106 (2011) 212302

Experimental data:

One $(\eta/s)(T)$ will be able to describe both RHIC and LHC data

Used parametrization not yet perfect: no surprise

More detailed study needed - include different RHIC energies and LHC
Event-by-event distributions of v_n

Experimenatal data:
ATLAS collaboration, arXiv:1305.2942

0-5%

20-25%

Event-by-event distributions of v_n - other models

Showing eccentricity distributions (yellow on the right)

Event-by-event distributions can distinguish between different initial state models → see Harri Niemi’s talk

Experimental data: ATLAS collaboration, arXiv:1305.2942
Establish a baseline for pp and pA/dA collisions

Note: Normalization depends on scale used in the running coupling. Using the produced gluon k_T, energy dependence is too weak. Need to include normalization $\propto \ln \sqrt{s}$ to account for this

η-dependence then comes from IP-Sat

Björn Schenke (BNL)
IS2013
Multiplicity distributions in pp

Fluctuation of Q_s needed to describe the multiplicity distribution in p+p

Result in red includes a smearing of Q_s by 9% around its mean
Multiplicity distributions in pPb

\[P(N_{\text{ch}} / \langle N_{\text{ch}} \rangle) \]

- IP-Glasma
- CMS preliminary \(N_{\text{track}} \)

note: comparing to uncorrected data

Schenke, Tribedy, Venugopalan, in preparation
d+Au collisions

IP-Glasma results differ significantly from a typical MC-Glauber model:

Energy density for the same nucleon positions:

In MC-Glauber all nucleons that are barely ’touched’ contribute fully to the energy density

an MC-Glauber implementation is used in e.g. P. Bozek, Phys.Rev. C85 (2012) 014911
d+Au collisions

IP-Glasma results differ significantly from a typical MC-Glauber model:

Energy density for the same nucleon positions:

In MC-Glauber all nucleons that are barely ’touched’ contribute fully to the energy density

an MC-Glauber implementation is used in e.g. P. Bozek, Phys.Rev. C85 (2012) 014911
d+Au collisions

IP-Glasma results differ significantly from a typical MC-Glauber model:

Energy density for the same nucleon positions:

In MC-Glauber all nucleons that are barely 'touched' contribute fully to the energy density

an MC-Glauber implementation is used in e.g. P. Bozek, Phys.Rev. C85 (2012) 014911
d+Au collisions

IP-Glasma results differ significantly from a typical MC-Glauber model:

Energy density for the **same nucleon positions**:

In MC-Glauber all nucleons that are barely ‘touched’ contribute fully to the energy density

an MC-Glauber implementation is used in e.g. P. Bozek, Phys.Rev. C85 (2012) 014911
System size in p+p and p+Pb in the IP-Glasma model

Radius defined by where energy density reaches Λ_{QCD}^4 or $10\Lambda_{QCD}^4$
Radius scales with $(dN_g/dy)^{1/3}$ for low dN_g/dy
Eccentricities from different models can differ significantly

MC-Glauber 1: smeared energy density deposited around center of wounded nucleons

MC-Glauber 2: smeared energy density deposited around binary collision position
Hydro-evolution in d+Au

$t = 0.2 \text{ fm}$
Hydro-evolution in d+Au

t = 0.2 fm

Björn Schenke (BNL)
Flow generated by hydrodynamics alone is much smaller than experimental results when using IP-Glasma initial conditions and $\eta/s = 0.08$

How much $v_2(2\text{PC})$ comes from the initial state?

Compute two-particle correlations from the initial glasma state:
- compute $dN_g/dy d^2k_T$ from the Fourier transformed glasma fields
- compute the correlation

$$\frac{S(k_1, k_2, \Delta \phi)}{B(k_1, k_2, \Delta \phi)} = \frac{\left\langle \left\langle \frac{d^2N}{d^2k_T}(k_1, \phi_1) \frac{d^2N}{d^2k_T}(k_2, \phi_1 + \Delta \phi) \right\rangle \right\rangle_{\phi_1}}{\left\langle \left\langle \frac{d^2N}{d^2k_T}(k_1, \phi_1) \right\rangle \left\langle \frac{d^2N}{d^2k_T}(k_2, \phi_1 + \Delta \phi) \right\rangle \right\rangle_{\phi_1}}$$

which is $\propto \frac{1}{N_{\text{trig}}} \frac{dN_{\text{pair}}}{k_1 k_2 dk_1 dk_2 d\Delta \phi}$
- Fourier expand

$$\frac{1}{N_{\text{trig}}} \frac{dN}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left[1 + \sum_n 2V_{n\Delta} \cos(n\Delta \phi) \right]$$

- Finally define

$$v_n(2\text{PC})(p_T) = \frac{V_{n\Delta}(p_T, p_T^{\text{ref}})}{\sqrt{V_{n\Delta}(p_T^{\text{ref}}, p_T^{\text{ref}})}}$$
Correlation functions with Fourier-fits

Near-side and away-side peaks are the same initially (no v_3) ... differ after rescattering in the evolution (introduces v_3)

todo: include additional correlations through JIMWLK evolution

Schenke, Venugopalan, preliminary
How much $v_2(2\text{PC})$ comes from the initial state?

$0.5 \text{ GeV} < p_T^{\text{ref}} < 4 \text{ GeV}$

Schenke, Venugopalan, preliminary

$v_2\{4\}$ in progress. Need lots of statistics.

no hydro
Is there an initial $v_3(2PC)$?

$0.3 \text{ GeV} < \frac{p_T^{\text{ref}}}{p_T} < 3 \text{ GeV}$

Schenke, Venugopalan, preliminary

No initial v_3! But significant build-up in Yang-Mills evolution.
Summary and conclusions

- IP-Glasma model + hydrodynamics very successful in describing higher flow harmonics in heavy-ion collisions
- Effective shear viscosity at RHIC smaller than at LHC
- Can reasonably reproduce multiplicity distributions in pp, pA, AA
- In small systems like p+Pb, initial shape and system size is very sensitive to model assumptions
- Hydro needs very small η/s in p+Pb to get close to the observed v_n - with IP-Glasma initial conditions it will not get there
- Significant initial v_2 from 2-particle correlations in the glasma
- No initial v_3, but built-up during Yang-Mills evolution
Flow in \(p+p \), \(p+Pb \) and \(d+Au \) collisions

Only qualitative scaling between flow and eccentricities

\(p+p \) (at \(b = 0 \) fm) and \(p+Pb \)

\[\langle \nu_n^2 \rangle^{1/2} \text{ vs } N_{\text{part}} \]

\(p+Pb \): Elliptic flow decreases with \(N_{\text{part}} \)

\(d+Au \): Elliptic flow increases with \(N_{\text{part}} \)

\(p+p \): Elliptic flow small, but not as small as expected from eccentricity

Need sophisticated centrality selection to compare with experiments

p+A collisions - is viscous hydro valid?

Initial $\pi_0^{\mu\nu} = 0$, $b = 0$ fm, IP-Glasma. Cells within f.o. surface that have $> 25\%$ viscous correction in p+Pb and Pb+Pb:

![Graph](image)

Important: Lifetime in Pb+Pb is about 6 times longer than in p+Pb

Also see Dumitru, Molnar, Nara, Phys.Rev. C76 (2007) 024910
p+A collisions - is viscous hydro valid?

same with Navier-Stokes $\pi_0^{\mu\nu}$, count cells within f.o. surface that have more than a 25% viscous correction in p+Pb and Pb+Pb:

Important: Lifetime in Pb+Pb is about 6 times longer than in p+Pb
p+A collisions - is viscous hydro valid?

Initial Navier-Stokes $\pi_0^{\mu\nu}$, count cells within f.o. surface that have more than a 50% viscous correction in p+Pb and Pb+Pb:

Important: Lifetime in Pb+Pb is about 6 times longer than in p+Pb
p_T distribution in pp

![Graph showing p_T distribution in pp](image)

Charged hadrons from KKP fragmentation

Kniehl, Kramer, Potter, NPB582 (2000) 514

As expected, spectra are too hard as in the MV model

We do not include an anomalous dimension γ

Schenke, Tribedy, Venugopalan, in preparation

p_T distribution in pPb

Charged hadrons from KKP fragmentation

As expected, spectra are too hard as in the MV model
We do not include an anomalous dimension γ

Schenke, Tribedy, Venugopalan, in preparation

Kniehl, Kramer, Potter, NPB582 (2000) 514

Existing initial state models

There are several models of fluctuating initial conditions in HICs. Most commonly used with fluid-dynamic simulations:
Both include geometric fluctuations of nucleons in nucleus

- **MC-Glauber model**
 Participants determined from nucleon-nucleon cross-section
 Gaussian energy density assigned to each wounded nucleon

- **MC-KLN model**
 Saturation based model (we’ll get to that)
 Initial energy density from convolution of the two gluon distribution functions

Testing initial state models with higher harmonics

MC-KLN $\eta/s = 0.2$

MC-Glauber $\eta/s = 0.08$

Negative binomial fluctuations

Fluctuations in the total energy per unit rapidity produce negative binomial distribution (NBD).

\[P(n) = \frac{\Gamma(k + n)}{\Gamma(k)\Gamma(n + 1)} \frac{\bar{n}^n k^k}{(\bar{n} + k)^{n+k}} \]

Good, since multiplicity in pp collisions can be described well with NBD.

In AA, convolution of NBDs at all impact parameters describes data well too.

P. Tribedy and R. Venugopalan

MC-KLN does not do that - these fluctuations need to be put in by hand.

see Dumitru and Nara arXiv:1201.6382
Eccentricities

Characterize the initial distribution by its ellipticity, triangularity, etc...

\[\varepsilon_n = \sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2 / \langle r^n \rangle} \]

- \(\varepsilon_n \) larger in Glasma model for odd \(n \)
- \(\varepsilon_n \) smaller in Glasma model for \(n = 2 \) (for \(b > 3 \text{ fm} \))
 - about equal for \(n = 4 \), larger for \(n = 6 \)