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Disclaimers

| doubt that | will be able to
answer the “charge” for my talk
but
| also doubt that this is what
the organizers expected :-)

| apologize in advance to those
(Y. Kovchegoy, J. Albacete, C. Salgado, F. Gelis, J. Qiu...)
whose brilliant work on pA | will not cover
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The common view before 2013

p+A (d+A) collisions serve as a control experiment
to separate initial-state effects from final-state effects
in A+A collisions

Flashback to 2003:
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d+Au Control Experiment

-

Nucleus- Proton/deuteron
hucleus / hucleus / \
collision collision

» Collisions of small with large nuclei were always foreseen as
necessary to quantify cold nuclear matter effects.

> Recent theoretical work on the "Color Glass Condensate”
model provides alternative explanation of data:

o Jets are not guenched, but are a priorl made In fewer numbers.

» Small + Large distinguishes all initial and final state eftects.

K. Hemmick
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Centrality Dependence
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» Dramatically different and opposite centrality evolution
of Au+Au experiment from d+Au control.

»Jet Suppression is clearly a final state effect.

K. Hemmick
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PHENIX
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»Jet Suppression is clearly a final state effect.
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Centrality Dependence
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Centrality Dependence
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“Initial state” effects

MAC

1 d°N
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Initial state correlations

Soft “minijets”
back-to-back
correlation
5..._--__.'~
St > A
0 Dusling & Venugopalan 1211.3701, 0
1302.7018
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The ultimate train wreck?
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In perspective...

Theory

Claiming that pA (dA) collisions
can probe cold nuclear matter effects
does not imply that there are
no hot matter effects present in pA (dA).

But it does require that we understand
where hot nuclear matter effects show up
and where they are negligible!

This is our present challenge.

10
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Theory

Final-state effects
were not completely unanticipated,
even in p+p(bar) collisions....

11
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Theory

E/735 data

VOLUME 67, NUMBER 12

PHYSICAL REVIEW LETTERS

16 SEPTEMBER 1991

Transverse Baryon Flow as Possible Evidence for a Quark-Gluon-Plasma Phase

Péter Lévai® and Berndt Miiller

Department of Physics, Duke University, Durham, North Carolina 27706

(Received 13 March 1991)

In order to investigate the coupling between the collective flow of nucleons and pions in hot pion-
dominated hadronic matter, we calculate the pion-nucleon drag coefficient in linearized transport theory.
We find that the characteristic time for flow equalization is longer than the time scale of the expansion
of a hadronic fireball created in high-energy collisions. The analysis of transverse-momentum data from
p+p collisions at Vs =1.8 TeV reveals the same flow velocity for mesons and antinucleons. We argue
that this may be evidence for the formation of a quark-gluon plasma in these collisions.

E735 - T. Alexopoulos, PRD84, 984 (1993)

Instead of being caused by collective flow,
the increase of <pt> with hadron mass
could be the result of a minijet production
mechanism (Xin-Nian Wang)
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E735 claims QGP!

Evidence for hadronic deconfinement in p-p collisions at 1.8 TeV

T. Alexopoulos,**) E. W. Anderson,? A. T. Bujak.'® D. D. Carmony® A. R. Erwin,!
L. J. Gutay,® A. S. Hirsch,® K. S. Nelson,***) N. T. Porile,”* S. H. Oh.(®
R. P. Scharenberg,® B. K. Srivastava,* B. C. Stringfellow,®) F. Turkot,(”) J. Warchol,®)
W. D. Walker®

arX1v:hep-ex/0201030v1 18 Jan 2002

Abstract
We have measured deconfined hadronic volumes, 4.4 < V < 13.0 fm?®,
produced by a one dimensional (1D) expansion. These volumes are directly
proportional to the charged particle pseudorapidity densities 6.75 < dN./dn <
20.2. The hadronization temperature is T' = 179.5 £ 5 (syst) MeV. Using
Bjorken’s 1D model, the hadromzation energy density 1s ep = 1.10 & 0.26

(stat) GeV/fm® corresponding to an excitation of 24.8 4+ 6.2 (stat) quark-
gluon degrees of freedom.

NP = 1.6/fm3 » ng"

13
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Theory

Experimental cross checks: d+Au ((He+Au ?)

14
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d+Au has larger v
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Theory

p vs. d vs. 3He

SHe should generate a large €3
RHIC could do it!

He3 + Au
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Theory

Hydrodynamics

distribution

Bozek & BroniowskKi
arXiv:1304.3044

Assumptions about spatial location
of the interactions make a difference
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Theory

" A
Au+Au — d+Au, p+PDb

Guangyou Qin & BM (arXiv:1306.3439)
using E-by-E initial state + hydro model
developed for Au+Au collisions at RHIC
(ideal fluid!) find remarkable agreement
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The nagging question

Can it really be hydrodynamics?
The standard folklore (before 2012): Protons are small.

But are they really? Compared to what?

19
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The nagging question

Can it really be hydrodynamics?
The standard folklore (before 2012): Protons are small.

But are they really? Compared to what?

n/s = 1/4mnttogether with kinetic theory n = npA/3 implies
A =3s/(4mp) = 1/p=1/(3T) = 0.2 fm

19
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(J =
The nagging question

Can it really be hydrodynamics?
The standard folklore (before 2012): Protons are small.

But are they really? Compared to what?
n/s = 1/4mnttogether with kinetic theory n = npA/3 implies
A =3s/(4mp) = 1/p=1/(3T) = 0.2 fm

We know that protons are fluctuating quantum systems.
When they are tiny, we call it “color transparency.”
But what can be tiny, also can be “fat” !

19
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(J =
The nagging question

Can it really be hydrodynamics?
The standard folklore (before 2012): Protons are small.

But are they really? Compared to what?
n/s = 1/4mnttogether with kinetic theory n = npA/3 implies
A =3s/(4mp) = 1/p=1/(3T) = 0.2 fm

We know that protons are fluctuating quantum systems.
When they are tiny, we call it “color transparency.”
But what can be tiny, also can be “fat” !

How to catch “fat” protons? A heavy nucleus acts as a net.

19
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Theory

" A
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Theory
Fat proton "net”
Some models of P(0): Npart depends on o:
e :
s —/ \N
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Theory
Fat proton "net”
Some models of P(0): Npart depends on o:
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Theory

What does a “fat” proton look like?

22
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“Obese” protons

Theory

Two extreme models

23
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“Obese” protons

Two extreme models

The “stringy” proton

F. BISSEY et al.

23
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Theory

“Obese” protons

The “stringy” proton

F. BISSEY et al.

Two extreme models

The “cloudy” proton

23
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Pictures®

The “stringy” proton

- faf=-fe

*Thanks to Chris Coleman-Smith

24
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Pictures®

The “stringy” proton

- faf=-fe

The “cloudy” proton

*Thanks to Chris Coleman-Smith

24
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pion cloud: exp. evidence

R.S. Towell et al. (E866/NuSea Collaboration), PRD64, 052002 (2001)
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Pion cloud models

P~ = probability for a proton to be
accompanied by N virtual pions
Na = number of “valence” quarks

Kumano, PRD 43, 59 (1991)

N Pn Na/3
0) 0.89 1
1 0.104 1.67

2 0.0062 2.33

3 2.4x104 3

4 7.2%x10° 3.67
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“Obese” protons

We have estimated the probability Can we estimate the probability
of finding a fat “cloudy” proton. of finding a fat “stringy” proton?
The “cloudy” proton The “stringy” proton

27
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Stringy proton model

Theory

u=x2—Xx
v=_>02+x1)2—x3

V(l‘.l, To, '1‘3)2 — k2(u2 4 1;2)

i+ p3 + 03+ V(21,22,23)° | U = E°U

ku® ka)
2v2 V6

‘I’(‘U,l.‘) = N exp (_

(r¥)=2.285/k  k=1GeV/fm=5GeV>

28
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Stringy proton model

Uu—Xx2—Xi

n2 2 2 e e )2 _ 2
e new  REBEEVEmm)] -

2 T k 2 k "2
V(21 22,25)% = K2(u2 + 07) W(u,0) = Nexp (-2 - 52
r?y=2.285k k=1GeV/fm=5 GeV32
p(L) = / W26 (u+ v — L) u*v?dudv L =total length of flux tube
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Experimental checks?
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Experimental checks?

m Fat protons have more “soft” partons, and valence quarks
are shifted to smaller values of x.

29
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Experimental checks?

m Fat protons have more “soft” partons, and valence quarks
are shifted to smaller values of x.

B Fat "stringy” protons should have a surplus of soft gluons
with similar x-distribution as a normal proton.

29
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Experimental checks?

m Fat protons have more “soft” partons, and valence quarks
are shifted to smaller values of x.

B Fat "stringy” protons should have a surplus of soft gluons
with similar x-distribution as a normal proton.

®m Fat “cloudy” protons have an enhanced quark sea in the
range x = 0.1.

29
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Experimental checks?

m Fat protons have more “soft” partons, and valence quarks
are shifted to smaller values of x.

B Fat "stringy” protons should have a surplus of soft gluons
with similar x-distribution as a normal proton.

®m Fat “cloudy” protons have an enhanced quark sea in the
range x = 0.1.

® This should lead to a suppression of very high-pt mesons in
high-multiplicity p+A and d+A events, and hard di-jets should
be shifted downstream (towards ya) in c.m. rapidity.

29
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Theory

Wounded nucleon (MC-Glauber) model
VS.

IP-Glasma (CGC) model

30

Wednesday, September 11, 13



(0 = S
|IP Dipole model

Nucleon thickness function:

oo Kowalski & Teaney, hep-ph/0304189
T(b) = / dz p(b, z)
1 5
Gaussian model: Te(b) = exp(—b~/2B¢) Bg=4.25 GeV2
2w B
4 25

Bzdak, Schenke,
Tribedy, Venugopalan

5 . L arXiv:1304.3403
_ IP-Glasma model
=0 3
= = 15}
E
-2 ped 4
L , p+Pb5.02 TeV epn = Agcp. ' |_
p+Pb 5.02 TeV ern = 10 Agcp
4 p+p 7 TeV e = Agep’ a8
) p+p 7 TeV gn'.n=10 1\0004 K
05 : ' ' : '
2 3 4 2 ° !

(dN/dy)'
31
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Energy deposition

Energy deposition in the
MC-"Glauber” model is | @ D ?
conceptually uncertain

/

32
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Theory

WNM vs. CGC 7

Wounded nucleon model: NchPA ~ Npart

CGC/Glasma: NcnPA ~ In(Npart)

Bzdak & Skokov, arXiv:1307.6168

Problem: Fluchtuations in Ncn in the CGC model are large!

120'lll]llll|lllll llllllll rrrrr
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Problem: How to determine Npart experimentally ?
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Core questions
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Core questions

m \What is the structure of “fat” nucleons?
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Core questions

B \What is the structure of “fat” nucleons?

B |s energy deposition in pA (dA) non-perturbative and related
to "wounded nucleons” or perturbative and governed by low-
X parton-parton interactions?

34
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Core questions

B \What is the structure of “fat” nucleons?

B |s energy deposition in pA (dA) non-perturbative and related
to "wounded nucleons” or perturbative and governed by low-
X parton-parton interactions?

® \What is the correct model of energy deposition in the
wounded nucleon (MC-Glauber) model?
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Core questions

B \What is the structure of “fat” nucleons?

B |s energy deposition in pA (dA) non-perturbative and related
to "wounded nucleons” or perturbative and governed by low-
X parton-parton interactions?

® \What is the correct model of energy deposition in the
wounded nucleon (MC-Glauber) model?

B \What is the limit of applicability of viscous hydrodynamics?
Does it work in pA (dA) above a certain multiplicity?

34
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HEBELEM
Core questions

B \What is the structure of “fat” nucleons?

B |s energy deposition in pA (dA) non-perturbative and related
to "wounded nucleons” or perturbative and governed by low-
X parton-parton interactions?

® \What is the correct model of energy deposition in the
wounded nucleon (MC-Glauber) model?

B \What is the limit of applicability of viscous hydrodynamics?
Does it work in pA (dA) above a certain multiplicity?

® Can initial state explanation of double ridge be excluded?
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HEUELEY

Theory

Final thoughts
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Tentative Run Schedule for RHIC

2013 .

2014

2015-2016

2017

2018-2019

2020

2021-2022

2023-24

510 GeV pol p+p

200 GeV Au+Au
15 GeV Au+Au

p+p at 200 GeV
p+Au, d+Au, 3He+Au at
200 GeV

High statistics Au+Au

No Run

5-20 GeV Au+Au (BES-2)

No Run

Long 200 GeV Au+Au w/
upgraded detectors
p+p, p(d)+Au at 200 GeV

No Runs

Sea quark and gluon polarization

Heavy flavor flow, energy loss,
thermalization, etc.
Quarkonium studies

QCD critical point search

Extract n/s(T) + constrain initial
quantum fluctuations

More heavy flavor studies
Sphaleron tests

Search for QCD critical point and
deconfinement onset

Jet, di-jet, y-jet probes of parton

transport and energy loss mechanism
Color screening for different QQ states

upgraded pol’d source
STAR HFT test

Electron lenses
56 MHz SRF
full STAR HFT
STAR MTD

PHENIX MPC-EX
Coherent electron cooling
test

Electron cooling upgrade

STAR ITPC upgrade

SsPHENIX installation

sPHENIX

Transition to EIC (eRHIC)

BROOKHEAVEN

Wednesday, September 11, 13



EIC will be a QCD laboratory

- BROOKHEVEN
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EIC will be a QCD laboratory

Gluon and sea quark structure of the proton,
or what gives matter (most of) its mass ?
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EIC will be a QCD laboratory

Gluon and sea quark structure of the proton,
or what gives matter (most of) its mass ?

Use the nucleus as a
fm-scale vertex detector
to probe confinement

panc

Broockhaven Science Associates 37
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EIC will be a QCD laboratory

Gluon and sea quark structure of the proton,
or what gives matter (most of) its mass ?

Use the nucleus as a
fm-scale vertex detector Is there a universal saturated
to probe confinement gluon ocean (CGC) at low x ?
10 e o pee T
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}w\.:%. B ST
.. t% PR IS
0] -~
S
0.1 S N
.. j "_,.-’;:___.. Agco la onde
20 T s 104 108
A X
BROOKHAVEN

Broockhaven Science Associates

Wednesday, September 11, 13



HEBELEE
PA versus eA ?
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the opportunity to explore polarized pA physics experimentally is
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PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),
the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.
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PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),

the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.

How important would it be to take more pA data than currently
planned in the RHIC run schedule?
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PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),

the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.

How important would it be to take more pA data than currently
planned in the RHIC run schedule?

What can we learn from pA that we cannot learn from eA and AA?
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HEBELEE
PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),

the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.

How important would it be to take more pA data than currently
planned in the RHIC run schedule?

What can we learn from pA that we cannot learn from eA and AA?

Would it be worth delaying the polarized ep/eA experimental
program of eRHIC to acquire more pA data?
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PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),
the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.

How important would it be to take more pA data than currently
planned in the RHIC run schedule?

What can we learn from pA that we cannot learn from eA and AA?

Would it be worth delaying the polarized ep/eA experimental
program of eRHIC to acquire more pA data?

Input from theoretical (and experimental) community is needed
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(0 = I
PA versus eA ?

When RHIC shuts down and transitions to eRHIC (as we hope),

the opportunity to explore polarized pA physics experimentally is
probably lost “forever”.

How important would it be to take more pA data than currently
planned in the RHIC run schedule?

What can we learn from pA that we cannot learn from eA and AA?

Would it be worth delaying the polarized ep/eA experimental
program of eRHIC to acquire more pA data?

Input from theoretical (and experimental) community is needed
as we plan and justify the future physics program of RHIC.
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Back-up slides
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e-RHIC overview

Add an electron accelerator to the existing RHIC accelerator complex:

5-10 GeV e-beam accelerated with an Energy Recovery Linac (ERL)
inside the existing RHIC tunnel and colliding with RHIC beams
(250 GeV polarized protons or 100 GeV/n heavy ions)

ERL provides fresh electron bunches for each collision resulting in
high luminosity (1033 cm-2 s1) and high electron polarization over a
wide kinematic range

Preliminary cost estimate for 5 GeV e-beam: $550M (FY12$) w/o
detector. Work on a design that will allow us to reach 10 GeV electron
energy for similar cost is ongoing.

STAR and PHENIX will soon submit Lol for e-RHIC Day-1 upgrades.

Comprehensive e-RHIC design document by year-end 2013.
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From RHIC to e-RHIC

STAR Forward Upgrade Plan

[ mTo || BEMC][TPC][_HFT][TOF][ EEMC ]_[ GEM |
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The 2013 NSAC Subcommittee on Future Facilities
identified the physics program for an Electron-lon
Collider, as it was described in the 2013 EIC White
Paper, as absolutely central to the U.S. nuclear
science program in the next decade.

~. EMCal & Preshower
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Broocknhav

eRHIC in RHIC tunnel

Luminosity 1033-1034 cm2? s'!

o
Electron energy 5-10 GeV %%
Electron current 50 mA
Electron polarization 80 %
Electron | proton energy 50 - 250 GeV
beam Proton current 300 mA
Proton polarization 70 %
Center-of-mass energy 30 - 70 GeV
ePHENIX
Proton or
HI beam
eSTAR
—— e

— | S
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