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HYDRODYNAMIC EVOLUTION

t

hydrodynamics

initial condition
pre-equilibrium

V4

e Standard picture of A-A collision: system evolves as a fluid
e Depends on initial T (7 = 79) J
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FLoOw

Asymmetric pressure gradients — anisotropic momentum distribution
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FLoOw

Asymmetric pressure gradients — anisotropic momentum distribution
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FLoOw

Asymmetric pressure gradients — anisotropic momentum distribution

27 dN —ing __ inV, o—ing
Ndo Z Voe Z v,eMne

FLUCTUATIONS ARE IMPORTANT!
e Not symmetric
e Varies from event to event
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HIiSTORY: ELLIPTIC FLOW

“Glauber” initial conditions “CGC” initial conditions
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(ML & Romatschke, Phys.Rev. C78 (2008) 034915)

e Depends on both medium properties (/s) and initial conditions
e Need more information about one to constrain the other J
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NEW OBSERVABLES
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(PHENIX, Phys.Rev.Lett. 107 (2011) 252301)
o New observables =— more constraints
e E.g., some initial conditions incompatible with (v, v3)

MATTHEW LuzuM (MCGILL/LBNL) IS FROM FLOW 11/9/2013



CONSTRAINING THE INITIAL STATE

GOAL: QUANTIFY DIRECT CONSTRAINTS ON INITIAL STATE
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CONSTRAINING THE INITIAL STATE

GOAL: QUANTIFY DIRECT CONSTRAINTS ON INITIAL STATE

e Usual procedure:

@ Choose initial state model

© Evolve with hydro for many events
© Compare to data.

© Goto step 1
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CONSTRAINING THE INITIAL STATE

GOAL: QUANTIFY DIRECT CONSTRAINTS ON INITIAL STATE

e Usual procedure:
@ Choose initial state model
© Evolve with hydro for many events
© Compare to data.
© Goto step 1

e Better: find constraints that can be checked without running hydro

e Note: in each event:

= F (T ()

e Need to understand hydro response F
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier
transform

o) = [ dxp(ehx
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier
transform

p(k) = /dZXp(X)eik'x = memkme_"”(bk
n,m

Pmin X <rm ein¢>>
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier

transform
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier

transform
= /dZXp(X)eik'x = memkme_"”(bk
n,m

Wmn ~ <rmein¢>>
W(k) = log(p(k)) = )~ Wi nk™e "

nm

e (Small m = small power of k in Taylor series)
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier

transform
— /dZXp(x)eik.x _ meﬂkme—inqbk
n,m

Wmn ~ <rmein¢>>
W(k) = log(p(k)) = )~ Wi nk™e "
n.m

e (Small m = small power of k in Taylor series)
e Can write complete hydro response as set of functions

Vneinwn — f( Wm7n)
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CUMULANT EXPANSION

Idea: (Teaney, Yan; Phys.Rev. C83 (2011) 064904)
e Characterize density by moments (or cumulants) of 2-D Fourier

transform
= /dZXp(X)eik'x = memkme_"”(bk
n,m

Wm,n ~ <rmein¢>>
W(k) = log(p(k)) = )~ Wi nk™e "
n.m
e (Small m = small power of k in Taylor series)
e Can write complete hydro response as set of functions
Vneinwn — f( Wm7n)

e Can use other bases (e.g., Bessel expansion of k modes)
(Coleman-Smith, Petersen, Wolpert; J.Phys. G40 (2013) 095103

Floerchinger, Wiedemann; arXiv:1307.3453, arXiv:1307.7611)
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CUMULANT EXPANSION: TAYLOR SERIES IN €

e Must make quantities with correct symmetries out of
Wm,n ~ <rme/n¢>
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CUMULANT EXPANSION: TAYLOR SERIES IN €

e Must make quantities with correct symmetries out of
Wm,n ~ <rmein¢>>

e If anisotropies are small, can arrange in Taylor series.
E.g., to first order:

(o)
— inw
Vo= vpe™ " = Z Cn+2p,n Wn+2,p
p=0
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e Must make quantities with correct symmetries out of
Wm’n ~ <I’mem¢>

e If anisotropies are small, can arrange in Taylor series.
E.g., to first order:
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— inw
Vn=vpe""" = Z Cn+2p,n Wn+2,p
p=0

e If hydro is sensitive to large scale structure, first terms are most
important (smaller powers of k in Fourier transform).
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e Must make quantities with correct symmetries out of
Wm’n ~ <I’mem¢>

e If anisotropies are small, can arrange in Taylor series.
E.g., to first order:

(o)
— inw
Vn=vpe""" = Z Cn+2p,n Wn+2,p
p=0

e If hydro is sensitive to large scale structure, first terms are most
important (smaller powers of k in Fourier transform).
e If single term sufficient:
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CUMULANT EXPANSION: TAYLOR SERIES IN €

e Must make quantities with correct symmetries out of
Wm’n ~ <I’mem¢>

e If anisotropies are small, can arrange in Taylor series.
E.g., to first order:

(o)
— inw
Vn=vpe""" = Z Cn+2p,n Wn+2,p
p=0

e If hydro is sensitive to large scale structure, first terms are most
important (smaller powers of k in Fourier transform).
e If single term sufficient:
. rn ing .
Vnelnllln — _C< € > = C Ene’”¢"

(rm

e (e = lowest k mode of initial density)
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Vh X €p

Relation works well for n < 3:

Vne/nw,7 —C Enemd)n

R\ [0 n=3b<safm
) ,Uy ) =0.990 2 n=3, b=5-9 fm

15

(Niemi, Denicol, Holopainen, Huovinen; arXiv:1212.1008) (Petersen, Qin, Bass, Muller, Phys. Rev. C 82, 041901 (2010))




HYDRO RESPONSE

e Hydro insensitive to higher cumulants: including several terms,
V26i2\|12 — C<r29i2¢2> + C/<r4ei2¢2> +. ..

is no better than just lowest term
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(Gardim, Grassi, ML, Ollitrault; Phys.Rev. C85 (2012) 024908)
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HYDRO RESPONSE

e Hydro insensitive to higher cumulants: including several terms,
voe?Ve = C(r2e2®2) + C'(r*e/?®2) + . ..

is no better than just lowest term
e Nonlinear terms are important for n > 4
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(Gardim, Grassi, ML, Ollitrault; Phys.Rev. C85 (2012) 024908)
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HYDRO RESPONSE

e Hydro insensitive to higher cumulants: including several terms,
V2ei2\112 — C<r2ei2¢2> + Cl<r4ei2¢2> +. ..
is no better than just lowest term
e Nonlinear terms are important for n > 4
To a good approximation:

V1 eV = Ci &4 od

Vo62Y2 — G, cpe2%2

V563V — Cy £q6/%%2

v4e’4"’4 = C471 546’4"4 + C4725§e"4¢2

V5e/®Ys = Cg ¢ 256/5% 1+ Cs,2€2€sei(2¢2+3¢3)
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HYDRO RESPONSE

e Hydro insensitive to higher cumulants: including several terms,
V2ei2\112 — C<r2ei2¢2> + Cl<r4ei2¢2> + ...

is no better than just lowest term
e Nonlinear terms are important for n > 4

To a good approximation:

Vq e"'“ = C1 €1 6’¢1

2w, _ 2,

Vo€ Cg Eo€
V4 ei4\|14 — C471 €4 el4¢4 + C47ZE§ el4¢’2

i5Ws _ i(202+3®3)

Vse C5’1 856i5¢5 + 057262836

Can use these relations to derive constraints for initial state:
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HYDRO RESPONSE

e Hydro insensitive to higher cumulants: including several terms,
V2ei2\112 — C<r2ei2¢2> + Cl<r4ei2¢2> + ...

is no better than just lowest term
e Nonlinear terms are important for n > 4

To a good approximation:
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EVENT-BY-EVENT V, DISTRIBUTION
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(Gale, Jeon, Schenke, Tribedy, Venugopalan, Nucl.Phys.A904-905 2013 (2013) 409c-412c)

e For n < 3, normalized v, distribution same as ¢, distribution
e — can compare initial state model directly to data J
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RATIOS OF MOMENTS OF V,,, V,, DISTRIBUTIONS

Can take ratios to generate single numbers that can be compared to
measurements. E.g.,
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(Bhalerao, ML, Ollitrault, Phys.Rev. C84 (2011) 034910
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RATIOS OF MOMENTS OF V,,, V,, DISTRIBUTIONS

Can take ratios to generate single numbers that can be compared to
measurements. E.g.,

e
- CMSPbPb |5, =2.76TeV
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(Sanders talk on Monday)

MATTHEW LuzuM (MCGILL/LBNL) IS FROM FLOW 11/9/2013



PRECISION CONSTRAINTS: £1

Can also constrain magnitude of lowest moments of ¢, distribution.
E.g., allowed values of y/(¢2):

0.20 o mckt
n DIPSY = e vl
R MC—KLN A
A Glauber (Nara) o
0.151_ ¥ Glauber (PHOBOS) . w"

%'0.10

0.05
<24

0.0 ﬁ 10 20 30 ‘Fo

% centralit
(Retinskaya, ML, Ollitrault Phys.Rev.Lett. 108 (2012)2 302
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PRECISION CONSTRAINTS: €2, €3

Can also constrain magnitude of lowest moments of ¢, distribution.
E.g., allowed values of (3)/(c2)%6:

0.5; o MC-Glauber
m A [ | MC-KLN
&' 03! * .‘ &> IP Glasma
A MCrcBK
v DIPSY
0.1t 20-30%
0.1 0.2 03
&3

(Retinskaya, ML, Ollitrault — See talk on Friday)
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SUMMARY

SUMMARY

e With the many new (and forthcoming) flow measurements, we can
directly constrain theory — both medium properties and the initial
state
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SUMMARY

SUMMARY

e With the many new (and forthcoming) flow measurements, we can
directly constrain theory — both medium properties and the initial
state

e Eccentricities e, represent the lowest kK mode of the Fourier
transformed initial density

e The set of ¢, accurately predict flow in each event (not always
linearly)

e — medium response effectively codified in a few coefficients

e — can provide simple and direct quantitative constraints that
must be satisfied for any model of the initial stages
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