A Large Ion Collider Experiment

J/ψ production in p-Pb with ALICE at the LHC

ALICE[©] | IS2013 | 12-Sep-2013 | Laurent Aphecetche

Outline

- Motivation
- Analysis
- Results
 - $d^2 \sigma_{J/\Psi}/dy dp_T$
 - $d\sigma_{J/\Psi}/dy$
 - R_{FB}(integrated)
 - *R*_{FB}(*р*_T)
 - pp interpolation
 - $R_{\text{pPb}}(y_{\text{cms}})$ and $R_{\text{Pbp}}(y_{\text{cms}})$

In red are **final** results from :

 J/ψ production and nuclear effects in p-Pb collisions at $\sqrt{s_{NN}}{=}5.02~{\rm TeV}$ arXiv:1308.6726

Cold Nuclear Matter effects

- nuclear absorption ^[1]
 - expected to be small at LHC
 - as $c\bar{c}$ pairs spend a very short time within nuclear matter due to large Lorentz factor of the pair with respect to the nucleus
- (coherent) energy loss [2]
 - the amount of medium-induced gluon radiation impacts the strength of the J/psi suppression
- initial state modification [3]
 - gluon shadowing (or saturation)
 - shadowing expected to be large at LHC (but large uncertainties on nPDFs at low x)

 http://lapth.cnrs.fr/generators
 g A=208 (Pb) EPS09 NLO

 $Q^2 = 10 \text{ GeV}^2$ g A=208 (Pb) FGS10 set II

 $Q^2 = 10 \text{ GeV}^2$ g A=208 (Pb) FGS10 set II

 $Q^2 = 10 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$

 1.4 $Q^2 = 10 \text{ GeV}^2$

 1.4 $Q^2 = 10 \text{ GeV}^2$

 0.8 0.6

 0.4 0.4

 10^3 10^2
 10^4 10^3
 10^2 10^1

[1] see *e.g.* Nucl. Phys. A700(2002)539
[2] see *e.g.* Phys.Rev.Lett. 109(2012)122301
[3] see *e.g.* JHEP0904(2009)065

Data selection

EVENT SELECTION

- Minimum Bias (MB) trigger : coincidence of the two sides of the VZERO (2.8 < η < 5.1 and -3.7 < η < -1.7)
- MB trigger efficiency ~ 99% for NSD events
- Rejection of beam-gas and electromagnetic interactions
- SPD used for vertex determination

DIMUON TRIGGER

• MB & two opposite sign muon tracks in the trigger chambers

ANALYSIS CUTS

- Muon trigger matching
- -4.0 < η_{μ} < -2.5
- 17.6 cm < R_{abs} < 89.5 cm (where R_{abs} is the track radial position at the end of absorber)

LHC beam energies asymmetry induces a **rapidity shift** of the NN-cms in the direction of the proton $\Delta y \approx \frac{1}{2} \log \frac{Z_{Pb}A_p}{Z_p A_{Pb}} = 0.465$

Data executive summary

	p-Pb (forward)	Pb-p (backward)	
L _{int} (nb ⁻¹)	5.03 ± 0.18	5.81 ± 0.19	
σ_{MB} (b) (from VdM scans)	2.08 ± 0.07	2.12 ± 0.07	
N _{J/Ψ} (10 ⁴)	$6.69 \pm 0.05 \pm 0.08$	$5.67 \pm 0.05 \pm 0.07$	
y _{cms} range	[2.03 ; 3.53]	[-4.46 ; -2.96]	
XBj range (assuming 2->1 kinematics)	1.8 - 8.1 x 10 -5	1.2 - 5.3 x 10⁻² Note @ 2	e : PHENIX 00 GeV
	p Pb	y=0 x _{Bj} =	1.5x10 ⁻²

Signal extraction

Based on fits of the invariant mass of unlike-sign muon pairs

Syst. uncertainty computed varying :

- **SIGNAL SHAPE** : extended Crystal Ball (CB2) or other pseudo-gaussian functions (tails tuned on the corresponding Monte Carlo (MC))
- BACKGROUND SHAPE : variable width gaussian (VWG) or polynomial x exponential
- FITTING RANGE

and amounts to 1-4%

Sample plots above are for CB2+VWG ALICE[©] | IS2013 | 12-Sep-2013 | Laurent Aphecetche 7

Acceptance x Efficiency

 $\langle Acc \times Eff \rangle_{pPb} = (25.4 \pm 1.3)\%$ $\langle Acc \times Eff \rangle_{Pbp} = (17.1 \pm 1.2)\%$

Difference between p-Pb and Pb-p due to different efficiency of the detector in the two data-taking periods

Source of syst. unc.	<syst. unc.=""></syst.>	
MC acceptance inputs	1.5%	
tracking efficiency	4-6%	
trigger efficiency	3 %	
matching efficiency	1 %	

Differential J/Ψ cross-section

$$\sigma_{J/\psi\to\mu^+\mu^-} = \frac{N_{J/\psi\to\mu^+\mu^-}}{L_{int} \times Acc \times Eff \times BR_{J/\psi\to\mu^+\mu^-}}$$

AT

Cross-section vs rapidity

Forward to Backward Ratio

computed in the y_{cms} range common to both p-Pb and p-Pb

- Ioss of 2/3 of statistics
- no pp cross-section needed

	p-Pb	Pb-p
common y _{cms} range	[2.96 ; 3.53]	
y _{lab} range	[3.43 ; 4]	[-3.07 ; -2.5]
х _{Вј} range	1.8 - 3.2 x 10⁻⁵	1.2 - 2.1 x 10 ⁻²

ALICE

Integrated *R*_{FB}

R_{FB} =0.60 ± 0.01(stat.) ± 0.06(syst.)

exp. uncertainty reasonably small

models w/ pure shadowing slightly overestimates the data

model including energy loss contribution shows good agreement with the data

(caveat: models over/undershooting the data can still get the $R_{\rm FB}$ right...)

 R_{FB} y-dependence is flat, while p_{T} -dependence is not (next slide)

- stronger suppression at low p_{T}
 - fairly well reproduced by models including energy loss
- observed p_T -dependence is smoother than expected in coherent energy loss models

Further ingredients for *R*_{pPb} measurement

• Nuclear thickness function

 $- \langle T_{pPb} \rangle = 0.0983 \pm 0.0035 \text{ mb}^{-1}$ (from Glauber)

- pp reference : no measurement at the required energy, so need to **interpolate**
 - 2 steps procedure :
 - energy interpolation (for each y bin)
 - » using own available results for pp at 2.76 and 7 TeV ($2.5 < y_{cms} < 4.0$)
 - » 3 empirical shapes : linear, power law, exponential
 - rapidity extrapolation
 - » due to the Δy =0.465 shift, cannot directly use the above interpolations
 - » dσ/dy fitted by various shapes (gaussian, polynomials) to reach the required y ranges
 - cross-checked with CEM and FONLL models

R_{pPb} and **R**_{Pbp} vs rapidity

- At forward y data in between shadowing and energy loss models
- At backward *y* models including coherent parton energy loss show a slightly steeper pattern than the observed one
- Color Glass Condensate model (Fuji et al., forward *y* only) overestimates the suppression ALICE® | IS2013 | 12-Sep-2013 | Laurent Aphecetche 15

ALICE vs LHCb : R_{pPb}

In this plot all systematic uncertainties are quadratically summed up ALICE[®] | IS2013 | 12-Sep-2013 | Laurent Aphecetche

ALICE

Conclusions

- *R*_{FB} shows a clear p_T dependence with a decrease at low p_T
 - in qualitative agreement with models including coherent energy loss contribution
- *R*_{pPb} show an increase of suppression towards forward rapidity
 - in agreement with energy loss model and/or shadowing model EPS09 NLO
- No suppression at backward rapidities

A Large Ion Collider Experiment

Thank you for your attention

ALICE[©] | IS2013 | 12-Sep-2013 | Laurent Aphecetche

A Large Ion Collider Experiment

BACKUPS

ALICE[©] | IS2013 | 12-Sep-2013 | Laurent Aphecetche

Cross-section vs rapidity in p-Pb vs pp interpolation

Suppression at forward rapidities

ALICE

RFB(**y**cms)

- No dependence of *R*_{FB} on rapidity
- Calculations including both shadowing and energy loss seems consistent with data

Integrated R_{pPb}

0.70 ± 0.01 (stat.) ± 0.04 (syst.uncorr.) ± 0.03 (syst.part.corr.) ± 0.03 (syst.corr.)

-4.46<y<-2.96

1.08 ± 0.01 (stat.) ± 0.08 (syst.uncorr.) ± 0.07 (syst.part.corr.) ± 0.04 (syst.corr.)

Signal extraction in different p_T bins (p-Pb)

Signal extraction in different p_T bins (Pb-p)

Signal extraction in different y bins (p-Pb)

Signal extraction in different y bins (Pb-p)

$d^2\sigma/dydp_T$ with < p_T >

system (energy)	y _{cms} -range	<p_></p_>	<pr>p_> computation range</pr>
pp (2.76 TeV)	2.5 - 4.0	$2.28 \pm 0.07 \pm 0.04$	0 < <i>p</i> _T < 8 GeV/c
pp (7 TeV)	2.5 - 4.0	$2.44 \pm 0.09 \pm 0.06$	$0 < p_T < 8 \text{ GeV/c}$
Pb-p (5.02 TeV)	-4.46 ; -2.96	2.47 ± 0.01 ± 0.02	0 < <i>p</i> ⊺ < 15 GeV/c
Pb-p (5.02 TeV)	-3.53 ; -2.96 (common range)	$2.56 \pm 0.01 \pm 0.02$	0 < <i>p</i> ⊺ < 15 GeV/c
p-Pb (5.02 TeV)	2.96 ; 3.53 (common range)	$2.71 \pm 0.01 \pm 0.02$	0 < <i>p</i> _T < 15 GeV/c
p-Pb (5.02 TeV)	2.5 - 4.0	2.77 ± 0.01 ± 0.02	0 < <i>p</i> ⊺ < 15 GeV/c

Upsilon R_{pPb}

Graphite

R_{abs}

 θ_{abs}

Muon absorber 10° 30 20 Vertex D_{abs} Tungsten Concrete Poly CH₂ borated 15% Lead

ALICE[©] | IS2013 | 12-Sep-2013 | Laurent Aphecetche 29

Signal shape functions formulas

Extended Crystal Ball

$$f(m) = N \times \begin{cases} \exp\left(-\frac{(m-\overline{m})^2}{2\sigma^2}\right), & \text{for } \frac{(m-\overline{m})}{\sigma} > -\alpha \\ A\left(B - \frac{m-\overline{m}}{\sigma}\right)^{-n}, & \text{for } \frac{(m-\overline{m})}{\sigma} \leq -\alpha \\ C\left(D + \frac{m-\overline{m}}{\sigma}\right)^{-n'}, & \text{for } \frac{(m-\overline{m})}{\sigma} \geq -\alpha' \end{cases} \qquad \qquad A = \left(\frac{n}{|\alpha|}\right)^n \exp\left(-\frac{|\alpha|^2}{2}\right) \\ B = \frac{n}{|\alpha|} - |\alpha| \\ C = \left(\frac{n'}{|\alpha'|}\right)^{n'} \exp\left(-\frac{|\alpha'|^2}{2}\right) \\ D = \frac{n'}{|\alpha'|} - |\alpha'| \end{cases}$$

NA60 function

$$f(m) = N \times \exp\left(-\frac{(m-\overline{m})^2}{2\sigma_{NA60}^2}\right) \qquad \sigma_{NA60} = \begin{cases} \sigma\left(1+p_1(m_1-m)^{p_2-p_3\sqrt{m_1-m}}\right), & \text{for } m < m_1 \\ \sigma, & \text{for } m_1 \le m < m_2 \\ \sigma\left(1+p_4(m-m_2)^{p_5-p_6\sqrt{m-m_2}}\right), & \text{for } m \ge m_2 \end{cases}$$

 N,σ (J/ Ψ width), m (J/ Ψ mass) are left free when fitting the data all other parameters are fixed on tuned MC

Interpolation : preliminary vs paper

ALICE

Preliminary results (based on a different interpolation method)

$J/\psi R_{pPb}$ and R_{Pbp} in y bins compared to models

PHENIX data

ALICE vs LHCb : cross-sections

ALICE vs LHCb : R_{FB}

ALICE vs LHCb : R_{pPb}

