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I. WHY and HOW
WHY?

◮ Many works on hydro with shear viscosity and comparison
with data.
Additional difficulties: initial geometry, particle emission
(δf ), various formalisms, etc.

◮ The part played by bulk viscosity has not been so
thorougly studied:
- Monnai, Hirano, PRC80 (2009) 054906,
- Denicol, Kodama, Koide, Mota, PRC80 (2009) 064901;
JPG37 (2010) 094040,
- Song, Heinz, PRC81 (2010) 024905,
- Bozek, PRC81 (2010) 034909,
- Roy, Chaudhuri, PRC85 (2012) 024909; erratum PRC85
(2012) 049902,
- Dusling, Schafer, PRC85 (2012) 044909.

◮ −→ Agree that v2(pT ) will be affected by bulk viscosity.
◮ No work on effect of bulk viscosity on higher order vn ’s.

(Above papers had smooth initial conditions.)



HOW

v-USPhydro
(viscous Ultrarelativistic Smooth Particle hydrodynamics)
Sucessor of NeXSPheRIO:

◮ First (∼ 2000) event-by-event code for relativistic nuclear
collisions (ideal fluid).

◮ Since 2010, various e-by-e codes have been appeared.

Description:
Modular event-by-event 2+1 hydrodynamical code that runs
ideal & viscous hydro with nonzero ζ/s and η/s

◮ Initial conditions can easily be implemented from other
sources.

◮ Equations of motion are solved using Smooth Particle
Hydrodynamics

In progress:
◮ Particle decays
◮ 3+1



II. Effect of viscosities on the fluid expansion
Equations of Motion for bulk
Conservation of Energy and Momentum

DµT µν = 0 (1)

The energy-moment tensor contains a bulk viscous pressure Π

T µν = (ǫ+ p + Π) uµuν
− (p + Π) gµν (2)

Using memory fuction method
(Denicol, Kodama, Koide, Mota, PRC75(2007)034909,
PRC78(2008)034901,JPG36 (2009)035103),
Π obeys

τΠuµDµΠ + Π = − (ζ + τΠΠ)Dµuµ

ΠNavier−Stokes = −ζDµuµ: it acts as a negative pressure,
slowing expansion and cooling ⇒ small effect if ζ small.



Description of Bulk Viscosity
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Using alttice-based equation of state: Huovinen, Petreczky, NPA837
(2010) 26.
Conservative estimate: ζ/s ∼ 0.1(1/4π)



Equations of Motion and description of Shear Viscosity:
Energy-moment tensor
T µν = (ǫ+ p)uµuν

− p gµν + πµν

Equation for shear stress tensor
τπ∆

µνλρuαDαπλρ + πµν = ησµν
− τππ

µνDαuα
(standard notations)

PRELIMINARY:
η
s = 1

4π , τπ = 5 η
sT

πµν
Navier−Stokes = ησµν : it tends to prevent deformations of fluid

cell.



Fluid expansion

Initial Conditions:
- MC-Glauber: energy density = cncoll(~r ) (c adjusted to get
midrapidity multiplicity)
- τ0 = 1 fm (tested)

h = 0.3, NSPH ∼ 3 104, nb.events/window=150.



Ideal after τ = 5.6fm

Shear+Bulk after τ = 5.6fm

Bulk after τ = 5.6fm

Shear after τ = 5.6fm

• Viscosity attenuates other forces → smearing of granularity.
• Shear dominates, bulk barely affects expansion (expected
since ζ/s << η/s).



III. Effect of viscosities at decoupling

Compute observables with Cooper-Frye formula:
Particle spectra: E d3N

dp3 =
∫

f .o. f (x ,p)p
µdσµ

f = feq + δfshear + δfbulk

Problem: compute δf .

In what follows:
Shear results: not (yet) ours
Bulk results: v-USPhydro.



δfshear

Common ansatz: δfshear ∼ πµνpµpν[(ǫ+ p)T 2].
Navier-Stokes limit, δfshear ∝ (η/s)p2

→ stronger effect for larger η/s and p.
◮ v2(pT ): shape dominated by δfshear :

Dusling, Moore, Teaney PRC81 (2010) 034907.
◮ vN(pT ) decreased

Schenke, Jeon, Gale PRC85 (2012) 024901



δfbulk

Using method of moments as in Denicol, Niemi NPA904-905
(2013) 369c
δf (π)bulk = feq × Π× [B(π)

0 + D(π)
0 u.p + E (π)

0 (u.p)2]
where

B(π)
0 = −65.85 fm4, D(π)

0 = 171, 27 fm4/GeV , E(π)
0 = −63.05 fm4/GeV 2

ideal

m om en ts

DS

MH

avg 20-30%

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

pT @GeVD

v
2

MH: Monnai, Hirano, PRC80 (2009) 054906

DS: Dusling, Schafer, PRC85 (2012) 044909

◮ v2(pT ): shape dominated by δfbulk :
Similar to δfshear .

◮ v2(pT ) is enhanced relative to ideal case.
δfbulk has opposite effect to that of δfshear

◮ Moment method leads to well-behaved v2(pT ) at high pT .



IV. Results

π
+ Spectrum (Direct π+’s Only)
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As expected: more slow/less fast particles.



Event-by-Event higher flow harmonics
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• vn(pT ) are significantly enhanced, even though ζ/s is small.
• HOW TO DISENTANGLE shear and bulk effects? (may
cancel each other)



Integrated vn’s
For small ζ/s, expect vbulk

n ∼ v ideal
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For large ζ/s, expect vbulk
n < v ideal
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V. Conclusion

◮ v-USPhydro: Lagrangian 2+1 hydro code with bulk and
shear viscosity, running event-by-event.

◮ vn(pT ) enhanced by bulk viscosity while it is decreased by
shear ciscosity.
- How to disentangle to extract η/s and ζ/s?
- Higher ζ/s do not seem excluded.

◮ Integrated vn’s (or other integrated quantities) may be
useful.

◮ δfbulk plays a crucial part.
(Here computed with moment method.)



BACK UP SLIDES



Dependence on τ0
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Checks

◮ Reproduce analytical sol. from 2+1 conformal ideal hydro

ǫ =
ǫ0

τ4/3

(2q)8/3

[

1 + 2q2
(

τ2 + x2
⊥

)

+ q4
(

τ2
− x2

⊥

)]4/3

Gubser,PRD82,085027(2010), Marrochio et. al. 1307.6130
[nucl-th] (first analytical solution of Israel-Stewart hydro)
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◮ The viscous bulk evolution converges to that computed
within ideal hydrodynamics for sufficiently small ζ/s.



Averaged Initial Conditions vs. Event-by-Event

- No decays are included. We use Monte Carlo Glauber initial
conditions.
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- The effect of the bulk viscosity is enhanced in event-by-event
studies
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