Bulk and Shear Viscosity Effects in Event-by-Event Relativistic Hydrrodynamics

J.Noronha-Hostler¹, G.Denicol², J.Noronha,¹ R.Andrare¹,<u>F.Grassi</u>¹

¹Instituto de Física, Universidade de São Paulo, Brazil

²Department of Physics, McGill University, Canada

IS2013

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Outline

I. WHY and HOW

II. Effect of viscosities on the fluid expansion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

III. Effect of viscosities at decoupling

IV. Results

V. Conclusion

arXiv:1305.1981

I. WHY and HOW WHY?

Many works on hydro with shear viscosity and comparison with data.

Additional difficulties: initial geometry, particle emission (δf), various formalisms, etc.

- The part played by bulk viscosity has not been so thorougly studied:
 - Monnai, Hirano, PRC80 (2009) 054906,
 - Denicol, Kodama, Koide, Mota, PRC80 (2009) 064901; JPG37 (2010) 094040,
 - Song, Heinz, PRC81 (2010) 024905,
 - Bozek, PRC81 (2010) 034909,
 - Roy, Chaudhuri, PRC85 (2012) 024909; erratum PRC85 (2012) 049902,
 - Dusling, Schafer, PRC85 (2012) 044909.
- \longrightarrow Agree that $v_2(p_T)$ will be affected by bulk viscosity.
- No work on effect of bulk viscosity on higher order v_n's.
 (Above papers had smooth initial conditions.)

HOW

v-USPhydro (viscous Ultrarelativistic Smooth Particle hydrodynamics) Sucessor of NeXSPheRIO:

- First (~ 2000) event-by-event code for relativistic nuclear collisions (ideal fluid).
- Since 2010, various e-by-e codes have been appeared.

Description:

Modular event-by-event 2+1 hydrodynamical code that runs ideal & viscous hydro with nonzero ζ/s and η/s

- Initial conditions can easily be implemented from other sources.
- Equations of motion are solved using Smooth Particle Hydrodynamics

In progress:

- Particle decays
- 3+1

II. Effect of viscosities on the fluid expansion

Equations of Motion for bulk Conservation of Energy and Momentum

$$D_{\mu}T^{\mu\nu}=0 \tag{1}$$

The energy-moment tensor contains a bulk viscous pressure Π

$$T^{\mu\nu} = (\epsilon + \rho + \Pi) u^{\mu} u^{\nu} - (\rho + \Pi) g^{\mu\nu}$$
(2)

Using memory fuction method

(Denicol, Kodama, Koide, Mota, PRC75(2007)034909, PRC78(2008)034901,JPG36 (2009)035103), □ obeys

$$au_{\Pi} u^{\mu} D_{\mu} \Pi + \Pi = - \left(\zeta + au_{\Pi} \Pi
ight) D_{\mu} u^{\mu}$$

 $\Pi_{Navier-Stokes} = -\zeta D_{\mu} u^{\mu}$: it acts as a negative pressure, slowing expansion and cooling \Rightarrow small effect if ζ small.

Description of Bulk Viscosity

$$\left(rac{\zeta}{s}
ight) = rac{1}{8\pi} \, \left(rac{1}{3} - c_s^2
ight), \qquad au_\Pi = 9 \, rac{\zeta}{\epsilon - 3
ho}$$

Inspired by Buchel, PLB663, 286 (2008) and Huang, Kodama, Koide, Rischke PRC83, 024906 (2011)

Using alttice-based equation of state: Huovinen, Petreczky, NPA837 (2010) 26.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Conservative estimate: $\zeta/s \sim 0.1(1/4\pi)$

Equations of Motion and description of Shear Viscosity: Energy-moment tensor $T^{\mu\nu} = (\epsilon + p) u^{\mu}u^{\nu} - p g^{\mu\nu} + \pi^{\mu\nu}$ Equation for shear stress tensor $\tau_{\pi}\Delta^{\mu\nu\lambda\rho}u^{\alpha}D_{\alpha}\pi_{\lambda\rho} + \pi^{\mu\nu} = \eta\sigma^{\mu\nu} - \tau_{\pi}\pi^{\mu\nu}D_{\alpha}u^{\alpha}$ (standard notations) PRELIMINARY: $\frac{\eta}{s} = \frac{1}{4\pi}, \ \tau_{\pi} = 5 \frac{\eta}{sT}$

 $\pi_{\textit{Navier-Stokes}}^{\mu\nu} = \eta \sigma^{\mu\nu}$: it tends to prevent deformations of fluid cell.

Fluid expansion

Initial Conditions:

- MC-Glauber: energy density = $cn_{coll}(\vec{r})$ (*c* adjusted to get midrapidity multiplicity)

- $\tau_0 = 1 \text{ fm}$ (tested)

$$h = 0.3$$
, $N_{SPH} \sim 310^4$, nb.events/window=150.

• Shear dominates, bulk barely affects expansion (expected since $\zeta/s \ll \eta/s$).

III. Effect of viscosities at decoupling

Compute observables with Cooper-Frye formula: Particle spectra: $E\frac{d^3N}{dp^3} = \int_{f.o.} f(x, p)p^{\mu}d\sigma_{\mu}$ $f = f_{eq} + \delta f_{shear} + \delta f_{bulk}$ Problem: compute δf .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

In what follows: Shear results: not (yet) ours Bulk results: v-USPhydro. δf_{shear}

Common ansatz: $\delta f_{shear} \sim \pi_{\mu\nu} p^{\mu} p^{\nu} [(\epsilon + p)T^2]$. Navier-Stokes limit, $\delta f_{shear} \propto (\eta/s)p^2 \rightarrow$ stronger effect for larger η/s and p.

• $v_2(p_T)$: shape dominated by δf_{shear} :

Dusling, Moore, Teaney PRC81 (2010) 034907.

• $v_N(p_T)$ decreased

Schenke, Jeon, Gale PRC85 (2012) 024901

$\frac{\delta f_{bulk}}{\text{Using method of moments as in Denicol, Niemi NPA904-905}} (2013) 369c \\ \delta f_{bulk}^{(\pi)} = f_{eq} \times \Pi \times [B_0^{(\pi)} + D_0^{(\pi)} u.p + E_0^{(\pi)} (u.p)^2] \\ \overset{\text{where}}{\underset{where}{B_0^{(\pi)} = -65.85 \text{ fm}^4, D_0^{(\pi)} = 171, 27 \text{ fm}^4/\text{GeV}, E_0^{(\pi)} = -63.05 \text{ fm}^4/\text{GeV}^2}}$

MH: Monnai, Hirano, PRC80 (2009) 054906

DS: Dusling, Schafer, PRC85 (2012) 044909

- v₂(p_T): shape dominated by δf_{bulk}: Similar to δf_{shear}.
- $v_2(p_T)$ is enhanced relative to ideal case. δf_{bulk} has opposite effect to that of δf_{shear}
- ► Moment method leads to well-behaved $v_2(p_T)$ at high p_T .

IV. Results

 π^+ Spectrum (Direct π^+ 's Only) $T_{f,o} = 150 \, \text{MeV}$

As expected: more slow/less fast particles.

Event-by-Event higher flow harmonics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

• $v_n(p_T)$ are significantly enhanced, even though ζ/s is small.

• HOW TO DISENTANGLE shear and bulk effects? (may cancel each other)

Integrated v_n's

For small ζ/s , expect $v_n^{bulk} \sim v_n^{ideal}$

V. Conclusion

- v-USPhydro: Lagrangian 2+1 hydro code with bulk and shear viscosity, running event-by-event.
- *v_n(p_T)* enhanced by bulk viscosity while it is decreased by shear ciscosity.
 - How to disentangle to extract η/s and ζ/s ?
 - Higher ζ/s do not seem excluded.
- Integrated v_n's (or other integrated quantities) may be useful.

(日) (日) (日) (日) (日) (日) (日) (日)

• δf_{bulk} plays a crucial part.

(Here computed with moment method.)

BACK UP SLIDES

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Dependence on τ_0

Checks

Reproduce analytical sol. from 2+1 conformal ideal hydro

$$\epsilon = \frac{\epsilon_0}{\tau^{4/3}} \frac{(2q)^{8/3}}{\left[1 + 2q^2\left(\tau^2 + x_\perp^2\right) + q^4\left(\tau^2 - x_\perp^2\right)\right]^{4/3}}$$

Gubser,PRD**82**,085027(2010), Marrochio et. al. 1307.6130 [nucl-th] (first analytical solution of Israel-Stewart hydro)

The viscous bulk evolution converges to that computed within ideal hydrodynamics for sufficiently small ζ/s.

Averaged Initial Conditions vs. Event-by-Event

- No decays are included. We use Monte Carlo Glauber initial conditions.

- The effect of the bulk viscosity is enhanced in event-by-event studies