In collaboration with E. G. Ferreiro, F. Fleuret, J. P. Lansberg & N. Matagne

Nuclear effects on Quarkonia and Heavy Quarks

Andry Rakotozafindrabe

IS 2013, Sept. 12th, Illa da Toxa – Galicia (Spain)
A ride into the cold lands ...

International Conference on the Initial Stages in High-Energy Nuclear Collisions, Illa da Toxa, Galicia
A ride into the cold lands ...

International Conference on the Initial Stages in High-Energy Nuclear Collisions, Illa da Toxa, Galicia
A ride into the cold lands ...

necessary to unravel hot (QGP) from cold effects
A ride into the cold lands ...

necessary to unravel hot (QGP) from cold effects

interesting on its own!

complex features, challenging for theories/models

- hidden vs open charm/beauty
- ground state vs excited state
- hadronised or pre-resonant state
- initial (shadowing ...) or final-state effect (absorption?)

Andry Rakotozafindrabe (CEA Saclay)
Workflow: from pp to pA

- Quarkonia in pp
 - partonic production process used as an input

- Quarkonia in pA
 - estimate
 - CNM effects + uncertainties

2 → 2 process
CSM @ LO

$g + g \rightarrow \Upsilon + g$

CSM LO sufficient to describe p_T integrated data

LO $g + g \rightarrow b + \bar{b}$ for b-quark production

J/ψ from b @ LHC

b-quarks prod. @ LHC

good agreement with:
- data vs y
- other approaches at low p_T of the b quark

Nuclear modification of $g(x)$

Large uncertainties for gluons:

- « qualitative » i.e. shape of the nPDF
 - antishadowing?
 - EMC effect / Fermi motion?
- « quantitative »
 - strength of the shadowing?
 - strength of the EMC effect

Ratio of nuclear struct. f. per nucleon:

$$R_g^A = \frac{g \text{ PDF} \in \text{bound nucleon}}{g \text{ PDF} \in \text{free nucleon}}$$

Initial-state effect measured in $p(d)+A$
Let us focus in the **EMC region** and pick the EPS09 sets that are the limiting cases in this region:

\[R_{pA} = \frac{\sigma_{pA}}{\langle N_{\text{coll}} \rangle \sigma_{pp}} \]

EMC effect stronger for g than for q?

EMC effect stronger for g than for q?

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne and A. R.

EPJ C (2013) 73:2427
γ in dAu @ RHIC : gluon EMC effect

Let us focus in the **EMC region** and pick the EPS09 sets that are the limiting cases in this region:

HKN disfavoured

EMC effect stronger for g than for q?

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne and A. R.
EPJ C (2013) 73:2427
Υ in dAu \@ RHIC : shadowing

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne and A. R.
EPJ C (2013) 73:2427

Υ could be a nice tool to check antishadowing (still under debate)
⇒ need much more precise data (AFTER\@LHC ? see talk by J.P. Lansberg)

absence of antishadowing ?

Data:
STAR Preliminary, Nucl. Phys. A855 (2011) 440,
The pPb run @ LHC

\(\text{pPb } \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \)

😊 No pp reference at the same \(\sqrt{s} \)

⇒ naively, we thought that it would be a source of a sizeable systematic error for \(R_{pPb} \)

(apparently, it is not the case, why ?)

⇒ we propose to use in priority :

\[
R_{\text{FB}} (|y_{\text{c.m.}}|) \equiv \frac{R_{pPb}(y_{\text{c.m.}})}{R_{pPb}(-y_{\text{c.m.}})}
\]

forward / backward

\[
R_{\text{CP}} \equiv \frac{R_{0-20\%}^{pPb}}{R_{60-90\%}^{pPb}}
\]

central / peripheral

Andry Rakotozafindrabe (CEA Saclay)
Absorption can safely be considered as negligible. Focus on shadowing effects:

Experiments probe the shadowing and antishadowing regions. The interesting EMC region will be out of reach.
Absorption can safely be considered as negligible. Focus on shadowing effects:

Experiments probe the shadowing and antishadowing regions. The interesting EMC region will be out of reach.

More precision needed at backward-\(y\) to conclude about antishadowing.
Absorption can safely be considered as negligible. Focus on shadowing effects:

Experiments probe the shadowing and antishadowing regions. The interesting EMC region will be out of reach. More precision needed at backward-\(y\) to conclude about antishadowing.

Andry Rakotozafindrabe (CEA Saclay)
For the first time, measurement of b-quarks production at LHC in pA, using non-prompt J/ψ down to $p_T = 0$.

data: LHCb non-prompt J/Ψ, arXiv:1308.6729
For the first time, measurement of b-quarks production at LHC in pA, using non-prompt J/ψ down to $p_T = 0$.

The b-quark is a colored object. Arléo et al.: there should be a coherent energy loss.
The effect of the energy loss nearly cancels out in the forward / backward ratio.
J/ψ in pPb @ LHC

E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. R.
arXiv:1305.4569

Forward / backward

data : ALICE inclusive J/Ψ, arXiv:1308.6726
LHCb prompt J/Ψ, arXiv:1308.6729
J/ψ in pPb @ LHC

Forward / backward

data: ALICE inclusive J/Ψ, arXiv:1308.6726
LHCb prompt J/Ψ, arXiv:1308.6729
Our model: fair agreement with data.

E-loss: need more observables (open heavy flavor?) to determine the size of the effect.
Fair agreement with the data

Alice
- box: correlated errors (partially + fully)
- bar: uncorrelated errors (stat. + syst.)

LHCb
only an overall syst. error was published
- bar: stat. + syst

data: ALICE inclusive J/Ψ, arXiv:1308.6726
LHCb prompt J/Ψ, arXiv:1308.6729
Fair agreement with the data

Alice
- box: correlated errors
 (partially + fully)
- bar: uncorrelated errors
 (stat. + syst.)

LHCb
only an overall syst. error was published
- bar: stat. + syst

Is the difference between ALICE and LHCb due to the pp interpolation or to prompt vs inclusive, or ...?
Scale uncertainty

- What enters the evaluation is $R_g^A(x, \mu_F)$
- What value to take for μ_F?
- In DIS, $\mu_F \leftrightarrow Q$ (Q is measured).
- For quarkonia? $\mu_F = M, m_c, m_T$?

The scale uncertainty must be added on top the EPS09 error evaluation.
J/ψ in pPb @ LHC

centrality dependence

R_{pPb} vs $y_{c.m.}$ for different centrality intervals:
- Cent. 0-20 %
- Cent. 20-40 %
- Cent. 40-60 %
- Cent. 60-90 %

$pPb 5$ TeV

Models:
- EPS09 LO central set
- EPS09 LO min. EMC
- EPS09 LO max. EMC
- EPS09 LO min. shadowing
- EPS09 LO max. shadowing
- nDSg LO
central / peripheral
At RHIC energies:

- **Backward-γ ϒ** data favours the presence of a **gluon EMC effect** (maybe stronger than the quark one).

At LHC energies:

- **For J/ψ**, nPDF fits reproduce the data. **No need for saturation?**

- **Scale uncertainty**: large. To be added to the uncertainties of the nPDFs.

- **Backward-γ ϒ** and non-prompt J/ψ can be used to constrain the gluon antishadowing. **More data is needed.**

- **Grain of salt**: no pp cross section measured @ 5 TeV!
EXTRA SLIDES
Adding a p_T cut (CMS acceptance):
J/ψ in pPb @ LHC

LO vs NLO EPS09:

![Graph](image)

Andry Rakotozafindrabe (CEA Saclay)
Adding absorption:

The forward/backward ratio is much less sensitive to the absorption effect.
Shadowing computation

- in pA: quarkonia production cross-section e.g. modified by a shadowing correction factor:
 \[R_g^A(x_2, Q^2) \]

- 4-mom conservation relates \((x_1, x_2)\) to quarkonia \((y, p_T)\)

- models (CEM, NRQCD, CSM ...) in p+p explain quarkonium prod. via various mechanisms, each with:
 - a given phase-space in \((x_1, x_2, y, p_T)\)
 - a given differential cross-section (weight) for each point in this phase-space

Different production models a priori results in different shadowings

Extrinsic scheme \(2 \rightarrow 2\) process
How prod. models can differ?

Intrinsic scheme

2 → 1 process

\[g + g \rightarrow c\bar{c} \text{ or } b\bar{b} \]

\[x_{1,2} = \frac{m}{\sqrt{s_{NN}}} e^{\pm y} \]

- Handy: unequivocal correspondence
 \[(x_1, x_2) \Leftrightarrow (y, p_T) \]

- Quarkonia \(p_T \) comes from initial partons
 - e.g. CEM LO

Extrinsic scheme

2 → 2 process

\[g + g \rightarrow \{J/\psi, \Upsilon\} + g \]

More degrees of freedom in the kinematics:

- Several \((x_1, x_2) \leftrightarrow (y, p_T)\)

\[y, p_T, x_1 \Rightarrow x_2 = \frac{x_1 m_T \sqrt{s e^{-y} - M^2}}{\sqrt{s} (\sqrt{s} x_1 - m_T e^y)} \]

- Quarkonia \(p_T \) is balanced by the outgoing gluon
 - e.g. CSM LO, COM LO

Use reasonably good models in p+p to compute CNM effects in p+A, A+A
CNM effects at RHIC: \(J/\psi \) in dAu

\[
g + g \rightarrow c\bar{c} \quad g + g \rightarrow J/\psi + g
\]

For a given \(y \), \(\langle x \rangle \) is larger in the \(2 \rightarrow 2 \) process
2→1 vs 2→2 prod. models:

$\sigma_{\text{abs}}(y)$ from Rcp in dAu @ 200 GeV

$\sigma_{\text{abs}}(y)$ much flatter for the 2→2 process

[1] A. D. Frawley, INT, Seattle USA, June 2009

Andry Rakotozafindrabe (CEA Saclay)
CSM LO
integrated cross section

\[\frac{d\sigma_{J/\psi}^{\text{direct}}}{dy}|_{y=0} \times \text{Br} \ (\text{nb}) \]

\[F_{J/\psi}^{\text{direct}} = 59 \pm 10 \% \]

LO gg CSM
PHENIX / CDF /ALICE data

Andry Rakotozafindrabe (CEA Saclay)
The p_T spectra in $p+p$ at RHIC

Brodsky, Lansberg, PRD 81:051502 (R) (2010)
LHC (7 TeV): CSM in good agreement with data vs p_T

CSM provides a good description of the direct production of both $\Upsilon(1S)$ and $\Upsilon(3S)$ states at low p_T.

LHCb Collaboration, arXiv 1202.6579.
Coherent energy loss

\[t_f^{\text{gluon}} \gg r_Au \]
\[\frac{\Delta E}{E} = \frac{\Delta x_1}{x_1} \simeq N_c \alpha_s \sqrt{\Delta \langle p_T^2 \rangle} / M_T \]

radiation off the incoming parton and outgoing colored object is coherent (small scattering angle in the rest frame of the nucleus)

Different E loss for CSM vs COM ?
Max. E loss for octet.

\[R_{\text{loss}}(x_1, Q^2) = \frac{g(x'_1, Q^2)}{g(x_1, Q^2)} \]
Coherent energy loss

Procedure

1. Fit \hat{q}_0 from J/ψ E866 data in pW collisions:
 $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$

2. Predict J/ψ and γ suppression for all nuclei and c.m. energies

- Fe/Be ratio well described, supporting the L dependence of the model

[F. Arleo, R. Kolevatov, S. Peigné, M. Rustamova, ECT* Trento, May 2013]
J/ψ vs in $\psi(2S)$ @ RHIC

$\psi(2S)$ PHENIX preliminary data in dAu

$t_f \sim r_{dAu}$ \hspace{1cm} $t_f \gg r_{dAu}$

Andry Rakotozafindrabe (CEA Saclay)

EKS98

EPS08

nDSg

arXiv:1305.5516

ψ(2S) final data : arXiv:1305.5516
Υ in dAu @ RHIC: abs. effective x-section

σ_{abs} should be small:

- At bkwd-y, $t_f < r_{Au}$, fully formed Υ.
- But no diff. exp. seen between $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ σ_{abs}.
- At $y>0$, $t_f > r_{Au}$, same small-size pre-resonance for all Υ states

$\sigma_\Upsilon \sim 0.1 \sigma_{J/\psi}$?

Uncertainty on abs. x-section (≤ 1 mb)
Uncertainty on gluon nPDF

Increasing t_f in the Au rest frame

Propagating in Au:

- Fully formed Υ
- Pre-resonant state $\sigma_\Upsilon \sim \left(\frac{m_c}{m_b}\right)^2 \sigma_{J/\psi}$

$x_F = 0 \quad x_F \sim 0.28$

Andry Rakotozafindrabe (CEA Saclay)