Production of two heavy quark pairs in double parton scattering at LHC

F.S. Navarra University of São Paulo

E.R. Cazaroto, V.P. Goncalves, F.S. Navarra, arXiv:1306.4169

Double parton scattering in pp collisions (DPS) Two partons from the target scatter with two partons from the projectile Landshoff, Polkinghorne, PRD (1978) M. Diehl, arXiv:1306.6059 Single parton scattering Double parton scattering ,0000000000000, ,00000000000, DODODODODO Q_2 70000000000000 pp \bar{Q}_2 enhanced by $G^2(x,\mu^2)$ suppressed by $\alpha_{ m s}^2$

LHC: gluon density is huge

May be seen in data as an excess of heavy pairs with respect to standard pQCD

Motivation to study DPS

- Generalized and multiparton distributions

- Production of hadronic states with double charm in pp collisions

Double charm baryons Double charm tetraquarks:

Nielsen,Navarra,Lee, Phys. Rept. (2010) arXiv:0911.1958

B factories

Double charm production in pp collisions

Double parton scattering in the factorization approach

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \,\hat{\sigma}_1(x_1 \bar{x}_1) \,\hat{\sigma}_2(x_2 \bar{x}_2) \int d^2 \mathbf{b} \, F(x_1, x_2, \mathbf{b}) F(\bar{x}_1, \bar{x}_2, \mathbf{b})$$
$$F(x_1, x_2, b) = f(x_1) \, f(x_2) \, g(b)$$

$$\sigma_{eff} = 15 mb$$

Gluon saturation

high energies large number of gluons gluon recombination

 $g g \rightarrow g$

Gluon recombination at very small **x** tames the growth of the gluon distribution

Implementation: k_{T} factorization + unintegrated pdfs or color dipole approach

Charm production in the color dipole approach

$$\sigma\{p \ p \to Q\overline{Q} \ X\} = 2 \int_{0}^{\ln(\sqrt{s}/2m_Q)} dy \ x_1 G(x_1, \mu^2) \ \sigma\{g \ p \to Q\overline{Q} \ X\}$$

 $2m_Q e^{-y}$

$$\sigma\{g \ p \to Q\bar{Q} \ X\} = \int_{0}^{1} d\alpha \int d^{2}\rho \ |\Psi_{g \to Q\bar{Q}}(\alpha, \rho)|^{2} \sigma_{gq\bar{q}}(\alpha, \rho)$$
$$x_{1} = \frac{2m_{Q} e^{y}}{\sqrt{s}}$$

$$|\Psi_{g \to Q\overline{Q}}(\alpha, \rho)|^{2} = \frac{\alpha_{s}(\mu^{2})}{(2\pi)^{2}} \{ m_{Q}^{2} K_{0}^{2}(m_{Q} \rho) + (\alpha^{2} + \overline{\alpha}^{2}) m_{Q}^{2} K_{1}^{2}(m_{Q} \rho) \}$$

$$x_{2}$$

$$\sigma_{gq\bar{q}}(\alpha,\rho) = \frac{9}{8} [\sigma_{dp}(\alpha\rho) + \sigma_{dp}(\overline{\alpha}\rho)] - \frac{1}{8} \sigma_{dp}(\rho) \qquad \qquad y = \frac{1}{2} \ln(\frac{x_1}{x_2})$$

$$\sigma_{dp}(x,\rho) = 2\int d^2b N(x,\rho,b) \qquad N(x,\rho,b) = N(x,\rho) S(b)$$

$$\sigma_{dp}(x,\rho) = \sigma_0 N(x,\rho)$$

Input:
$$G(x_1, \mu) = CTEQ6L$$
 $\mu^2 = m_c^2$ $N(x, \rho)$

Phenomenolog. parametrization of DIS data

Golec-Biernat Wüsthoff, PRD (1999)

$$N(x,\rho) = 1 - \exp\left[-\frac{1}{4}(\rho^2 Q_s^2)\right]$$

$$Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

$$\rho \rightarrow 0 \qquad N \approx \frac{1}{4} \left(\rho^2 Q_s^2 \right) \qquad \text{(linear limit)}$$

Numerical solution of BK equation with running coupling corrections to the kernel: rcBK

Albacete, Armesto, Milhano, Salgado, PRD (2009)

Numerical Results

Before ALICE

C-Rays nucl-ex/0607015

Cazaroto,Gonçalves,Navarra, arXiv:1108.3143 Numerical Results

After ALICE

$$\sigma_{h_1 h_2 \to Q_1 \bar{Q}_1 Q_2 \bar{Q}_2}^{DPS} = \left(\frac{m}{2}\right) \frac{\sigma_{h_1 h_2 \to Q_1 \bar{Q}_1}^{SPS} \sigma_{h_1 h_2 \to Q_2 \bar{Q}_2}^{SPS}}{\sigma_{eff}}$$

Heavy quark production cross section

Total pp cross section

without saturation effects

Luszczak, Maciula, Szczurek, arXiv:1111.3255

with saturation effects

(agreement between models within the uncertainties)

LHCb rapidity range:

2 < y < 4.5

LHCb rapidity range: 2 < y < 4.5

Full rapidity range

Color dipole model for charm production still works !

Charm production at LHC: DPS processes are comparable to SPS. We confirm the results of Luszczac, Maciula and Szczurek.

Saturation effects are visible ! They reduce 15% the SPS and 28% the DPS charm cross sections at $s^{1/2}$ = 14 TeV.

Enhancement in b production due to DPS (bc).

Single parton scattering in pp collisions (SPS)

<u>One gluon</u> from the target scatters with <u>one gluon</u> from the projectile

Heavy quark pair in SPS

Two heavy quark pairs in SPS

Suppressed by $lpha_{\scriptscriptstyle S}^2$

Double parton scattering in pp collisions (DPS)

<u>Two gluons</u> from the target scatter with <u>two gluons</u> from the projectile

Landshoff, Polkinghorne, PRD (1978) M. Diehl, arXiv:1306.6059

Two heavy quark pairs in DPS

At LHC: gluon density is huge

Higher probability of DPS

Charm production in the color dipole approach

$$\sigma_{h_1 h_2 \to Q_1 \bar{Q}_1 Q_2 \bar{Q}_2}^{DPS} = \left(\frac{m}{2}\right) \frac{\sigma_{h_1 h_2 \to Q_1 \bar{Q}_1}^{SPS} \sigma_{h_1 h_2 \to Q_2 \bar{Q}_2}^{SPS}}{\sigma_{eff}}$$

 $\sigma(h_1 h_2 \to \{Q\bar{Q}\}X) = 2 \int_0^{-\ln(2m_Q/\sqrt{s})} dy \, x_1 \, G_{h_1}(x_1, \mu_F) \, \sigma(Gh_2 \to \{Q\bar{Q}\}X)$

$$\sigma(Gh_2 \to \{Q\bar{Q}\}X) = \int_0^1 d\alpha \int d^2\rho \ |\Psi_{G\to Q\bar{Q}}(\alpha,\rho)|^2 \ \sigma^{h_2}_{Q\bar{Q}G}(\alpha,\rho)$$

$$\sigma_{Q\bar{Q}G}^{h_2}(\alpha,\rho) = \frac{9}{8} [\sigma_{Q\bar{Q}}(\alpha\rho) + \sigma_{Q\bar{Q}}(\bar{\alpha}\rho)] - \frac{1}{8} \sigma_{Q\bar{Q}}(\rho)$$

Only gluon-gluon fusion

Higher order -> renormalization with K factor

Early works

- [1] P.V. Landshoff and J.C. Polinghorne, Phys. Rev. D18 (1978) 3344.
- [2] F. Takagi, Phys. Rev. Lett. 18 (1979) 1296.
- [3] C. Goebel and D.M. Scott and F. Halzen, Phys. Rev. **D22** (1980) 278
- [4] B. Humpert, Phys. Lett. **B131** (1983) 461.
- [5] N. Paver and D. Treleani, Phys. Lett. **B146** (1984) 252.
- [6] N. Paver and D. Treleani, Z. Phys. C28 (1985) 187.
- [7] M. Mekhfi, Phys. Rev. D32 2371; M. Mekhfi, Phys. Rev. D32 2380.
- [8] B. Humpert and R. Oderico, Phys. Lett. **B154** (1985) 211.
- [9] T. Sjöstrand and M. van Zijl, Phys. Rev. D36 (1987) 2019.

P.V. Landshoff and J.C. Polinghorne, Phys. Rev. D18 (1978) 3344.

Recent works

- [10] M. Drees and T. Han, Phys. Rev. Lett. 77 (1996) 4142.
- [11] A. Kulesza and W.J. Stirling, Phys. Lett. B475 (2000) 168.
- [12] A. Del Fabbro and D. Treleani, Phys. Rev. D66 (2002) 074012.
- [13] E.L. Berger, C.B. Jackson and G. Shaughnessy, Phys. Rev. D81 014014 (2010).
- [14] J.R. Gaunt, C-H. Kom, A. Kulesza and W.J. Stirling, arXiv:1003.3953.
- [15] M. Strikman and W. Vogelsang, Phys. Rev. D83 (2011) 034029.
- [16] B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Phys. Rev. D83 (2011) 071501.
- [17] C.H. Khom, A. Kulesza and W.J. Stirling, Phys. Rev. Lett. 107 (2011) 082002.
- [18] S.R. Baranov, A. M. Snigirev and N.P. Zotov, arXiv:1105.6279.
- [19] A.M. Snigirev, Phys. Rev. D68 (2003) 114012.
- [20] V.L. Korotkikh and A.M. Snigirev, Phys. Lett. **B594** (2004) 171.
- [21] T. Sjöstrand and P.Z. Skands, JHEP 0403 (2004) 053.
- [22] J.R. Gaunt and W.J. Stirling, JHEP 1003 (2010) 005.
- [23] J.R. Gaunt and W.J. Stirling, JHEP 1106 (2011) 048.
- [24] M. Diehl and A. Schäfer, Phys. Lett. B698 (2011) 389.
- [25] M.G. Ryskin and A.M. Snigirev, Phys. Rev. D83 (2011) 114047.
- [26] M. Diehl, D. Ostermeier and A. Schäfer, arXiv:1111.0910.

In Fig. 2 we compare cross sections for the single and double-parton scattering as a function of proton-proton center-of-mass energy. At low energies the conventional single-parton scattering dominates. For reference we show the proton-proton total cross section as a function of energy as parametrizes in Ref. [33]. At low energy the $c\bar{c}$ or $c\bar{c}c\bar{c}$ cross sections are much smaller than the total cross section. At higher energies the contributions dangerously approach the expected total cross section¹. This shows that inclusion of unitarity effect and/or saturation of parton distributions may be necessary. The effect of saturation in $c\bar{c}$ production has been included e.g. in Ref. [34] but not checked versus experimental data.

$$\frac{d\sigma\{p \ p \to Q\overline{Q} \ X\}}{dy} = x_1 G(x_1, \mu^2) \ \sigma\{g \ p \to Q\overline{Q} \ X\}$$

LHCb rapidity range: 2 < y < 4.5

Full rapidity range

10⁵ [10¹ E1111111 SPS c SPS b DPS bc LHC cc / c 10⁴ bc / c bb / b 10⁰ σ^{SPS} 10^{3} a (إله) σ^{DPS} 10² 10⁻² 10^{1} LHC 00 4000 <u>6000</u> 10⁻³ 2000 8000 10000 12000 14000 $10^{0}_{10^{3}}$ s^{1/2} (GeV) 10^{4} s^{1/2} (GeV)

Full rapidity range

Full rapidity range

Dipole - proton cross section

GBW	(1998)
BGK	(2002)
IPsat	(2003)
MII	(2004)
κκτ	(2004)
bCGC	(2006)
DHJ	(2006)
GKMN	(2006)
MPS	(2007)
BUW	(2008)
rcBK	(2009)
	GBW BGK IPsat IIM KKT bCGC DHJ GKMN MPS BUW rcBK

(and others...sorry for omissions)

• Asymptotic limits:

Without saturation:With saturation:
$$\begin{cases} \rho \rightarrow 0 & N \approx \rho^2 \\ \rho \rightarrow \infty & N \approx \rho^2 \rightarrow \infty \end{cases}$$
 $\begin{cases} \rho \rightarrow 0 & N \approx \rho^2 \\ \rho \rightarrow \infty & N \approx 1 \end{cases}$

• Model by Golec-Biernat and Wüsthoff (<u>GBW</u>) - 1999:

$$N(x,\rho) = 1 - \exp\left[-\frac{1}{4}\left(\rho^2 Q_s^2\right)\right] \qquad \qquad \begin{cases} \rho \to 0 \qquad N \approx \frac{1}{4}\left(\rho^2 Q_s^2\right) \\ \rho \to \infty \qquad N \approx 1 \end{cases}$$