Two- and four-particle correlations in pPb collisions from CMS

Julia Velkovska

for the CMS Collaboration
Can you guess: PbPb, pPb or pp?
Motivation

High-multiplicity pp collisions at $\sqrt{s} = 7$ TeV

JHEP 1009 (2010) 091
pPb collisions could be even more violent!

- 418 charged particles detected!
We study 2-particle correlations
To findridges everywhere ...

(a) \(p \rightarrow p \rightarrow N_{\text{trk}}^{\text{offline}} \geq 110 \)

\[R(\Delta n, \Delta \phi) \]

(b) \(\text{Pb} \rightarrow \text{Pb} \rightarrow 35-40\% \)

\[N_{\text{trig}} \frac{d^2 N_{\text{pair}}}{d\Delta \phi d\Delta n} \]

CMS pPb \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}, N_{\text{trk}}^{\text{offline}} \geq 110 \)

\[1 < p_T < 3 \text{ GeV}/c \]

PLB 718 (2013) 795
2013 pPb data: match the multiplicity in PbPb

- Extend the multiplicity range in pPb
- Study Fourier harmonics
- 4-particle correlations
- Revisit PbPb
Questions to address

• What is the origin of the ridge in small systems?
 – Collective flow?
 – Quantum interference of gluons (CGC)?
 – … or something else?

• What are the initial state fluctuations?

• Methods:
 – Compare 2- and 4-particle correlations in different collision systems
 – Study high-order harmonics
 – multiplicity dependence
EXPERIMENTAL DETAILS
Data sets and triggers

- Start with a L1 trigger “seed”: total transverse energy > 20,40 GeV
- 4 High-Multiplicity HLT trigger thresholds based on tracking
- Each recorded 20 M events in 3 weeks run
- pPb integrated luminosity: 31nb⁻¹
- PbPb data from 2011: 50-100% , 2.3 μb⁻¹ reanalyzed
2-particle correlations

Signal pair distribution:

\[S(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{same}}}{d\Delta \eta d\Delta \phi} \]

Background pair distribution:

\[B(\Delta \eta, \Delta \phi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{mix}}}{d\Delta \eta d\Delta \phi} \]

\[\Delta \eta = \eta^{\text{assoc}} - \eta^{\text{trig}} \]

\[\Delta \phi = \phi^{\text{assoc}} - \phi^{\text{trig}} \]

\[\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \]

(b) CMS pPb \(|S_{NN}| = 5.02 \text{ TeV}, 220 < n_{\text{trig}} < 260\)

1 \(< p_T^{\text{trig}} < 3 \text{ GeV}/c\)

1 \(< p_T^{\text{assoc}} < 3 \text{ GeV}/c\)

Event 1:

Event 2:
Collective effects: decompose in Fourier components

Jet-like correlations

Long and short range correlations
Fourier decomposition

Assuming factorization:

\[V_n \{2, |\Delta \eta| > 2\} (p_T) = \frac{V_{n\Delta} (p_T^\text{ref} \cdot p_T^\text{ref})}{\sqrt{V_{n\Delta} (p_T^\text{ref} \cdot p_T^\text{ref})}} \]

Fourier decomposition:

\[\frac{dN_{\text{pair}}}{d\Delta \phi} \sim 1 + 2 \sum_{n=1} V_{n\Delta} \cos(n \Delta \phi) \]

Take low reference \(p_T \) bin (0.3-3 GeV/c)
pPb: Subtraction of peripheral correlations

- Away-side:
 - non-flow correlations

\[
\frac{1}{N_{\text{trig}}} \frac{dN^{\text{pair}}}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left\{ 1 + \sum_n 2V_{n\Delta} \cos(n\Delta \phi) \right\}
\]

- Subtract peripheral

\[N_{\text{trk}}^{\text{offline}} < 20\]

 - to get \(v_2, v_3\)

\[V_{n\Delta} (\text{cent}) - V_{n\Delta} (\text{peri}) \times \frac{N_{\text{assoc}} (\text{peri})}{N_{\text{assoc}} (\text{cent})} \times \frac{Y_{\text{jet}} (\text{cent})}{Y_{\text{jet}} (\text{peri})}\]

Account for the fact that jet correlation increases with multiplicity

Note: Results are obtained with or without peripheral subtraction

Test in HIJING
multi-particle correlations

Four particle correlations (Q-cumulant method):

\[c_n\{4\} = \left\langle \langle 4 \rangle \right\rangle - 2 \cdot \left\langle \langle 2 \rangle \right\rangle^2 \]
Effect of multiplicity fluctuations on $c_2\{4\}$

Turn-on of the signal in data

Narrow bins + averaging: $c_2\{4\} > 0$

Wide bins: “generate” v_2 in HIJING
RESULTS
Long range 1 D correlation functions

PLB 724 (2013) 213
The ridge yield in different systems

Similar p_T dependence in PbPb and pPb

Turn on around $N_{\text{trk}} \sim 50$

Independent of system size

PLB 724 (2013) 213

$1 < p_T^{\text{trig}} < 2 \text{ GeV/c}$

$1 < p_T^{\text{assoc}} < 2 \text{ GeV/c}$
p_T dependence of \(v_n \): PbPb vs pPb

Dashed-dotted curves
N<20 subtracted
Important for high-p_T

Remarkable similarity in PbPb and pPb for same multiplicity
v_2\{4\} turn-on around N_{trk} \sim 50; weak multiplicity dependence
Multiplicity dependence of v_2

Larger fluctuation in pPb

\begin{align*}
 v_n \{2\} &= \sqrt{\langle v_2 \rangle^2 + \sigma_{v_n}^2} \\
 v_n \{4\} &= \sqrt{\langle v_2 \rangle^2 - \sigma_{v_n}^2} \\
 \frac{\sigma_{v_n}}{v_n} &= \sqrt{\frac{v_n^2 \{2\} - v_n^2 \{4\}}{v_n^2 \{2\} + v_n^2 \{4\}}} \\
\end{align*}
Multiplicity dependence of v_3

- Independent of system size
- Does not extrapolate to 0

PLB 724 (2013) 213

$0.3 < p_T < 3$ GeV/c

$\sqrt{s_{NN}} = 2.76$ TeV

$\sqrt{s_{NN}} = 5.02$ TeV
Other hints of collective effects?

Inverse slope of m_T distributions, T_{slope}:

$$\frac{1}{m_T} \frac{dN}{dm_T} \sim \exp\left(-\frac{m_T}{T_{\text{slope}}}\right)$$

Inverse slope increases with particle mass and with multiplicity. Reminiscent of radial flow.
Conclusions

- CMS has measured elliptic and triangular flow coefficients in pPb and PbPb collisions.
- Similar p_T and multiplicity dependence in different systems; v_3 is identical in pPb and PbPb.
- Four-particle correlations indicate a turn-on of multi-particle dynamics at $\sim N_{trk} \sim 50$.
- The ridge becomes apparent at the same multiplicity independent of system size.
 - Are we probing the limits of hydrodynamics?
- Hints of multiplicity dependent radial expansion.
- pPb provides a testing ground for our “reference” ideas.
v_2/ϵ_2 vs $dN_{ch}/d\eta |_{\eta=0}$

- pPb $\sqrt{s_{NN}} = 5.02$ TeV, v_2 \{2, |$\Delta\eta|>2\}/\epsilon_2$ \{2\} (70-100\% sub.)
- PbPb $\sqrt{s_{NN}} = 2.76$ TeV, v_2 \{2, |$\Delta\eta|>2\}/\epsilon_2$ \{2\} (70-100\% sub.), reanalyzed
- PbPb $\sqrt{s_{NN}} = 2.76$ TeV, v_2 \{EP\}/\epsilon_2$ \{2\}, published

$0.3 < p_T < 3$ GeV/c

CMS Preliminary
<table>
<thead>
<tr>
<th>N_{trk} bin</th>
<th>PbPb data</th>
<th></th>
<th>pPb data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\langle C_{\text{trk}} \rangle$</td>
<td>$\langle N_{\text{trk}}^{\text{offline}} \rangle$</td>
<td>$\langle N_{\text{trk}}^{\text{corrected}} \rangle$</td>
<td>Fraction</td>
</tr>
<tr>
<td>$[0, \infty)$</td>
<td>92±4</td>
<td>10</td>
<td>13±1</td>
<td>1.00</td>
</tr>
<tr>
<td>$[0, 20)$</td>
<td>86±4</td>
<td>24</td>
<td>30±1</td>
<td>0.31</td>
</tr>
<tr>
<td>$[20, 30)$</td>
<td>83±4</td>
<td>34</td>
<td>43±2</td>
<td>0.14</td>
</tr>
<tr>
<td>$[30, 40)$</td>
<td>80±4</td>
<td>44</td>
<td>55±2</td>
<td>0.12</td>
</tr>
<tr>
<td>$[40, 50)$</td>
<td>78±3</td>
<td>54</td>
<td>68±3</td>
<td>0.10</td>
</tr>
<tr>
<td>$[50, 60)$</td>
<td>75±3</td>
<td>69</td>
<td>87±4</td>
<td>0.09</td>
</tr>
<tr>
<td>$[60, 80)$</td>
<td>72±3</td>
<td>89</td>
<td>112±5</td>
<td>0.12</td>
</tr>
<tr>
<td>$[80, 100)$</td>
<td>70±3</td>
<td>109</td>
<td>137±6</td>
<td>0.07</td>
</tr>
<tr>
<td>$[100, 120)$</td>
<td>67±3</td>
<td>134</td>
<td>168±7</td>
<td>0.03</td>
</tr>
<tr>
<td>$[120, 150)$</td>
<td>64±3</td>
<td>167</td>
<td>210±9</td>
<td>0.02</td>
</tr>
<tr>
<td>$[150, 185)$</td>
<td>62±3</td>
<td>202</td>
<td>253±11</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td>$[185, 220)$</td>
<td>59±2</td>
<td>239</td>
<td>299±13</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>$[220, 260)$</td>
<td>57±2</td>
<td>279</td>
<td>350±15</td>
<td>6×10^{-5}</td>
</tr>
<tr>
<td>$[260, 300)$</td>
<td>55±2</td>
<td>324</td>
<td>405±18</td>
<td>3×10^{-6}</td>
</tr>
<tr>
<td>$[300, 350)$</td>
<td></td>
<td></td>
<td></td>
<td>1×10^{-7}</td>
</tr>
</tbody>
</table>
CMS PbPb $\sqrt{s_{NN}} = 2.76$ TeV

120 ≤ $N_{\text{trk}}^{\text{offline}}$ < 150

150 ≤ $N_{\text{trk}}^{\text{offline}}$ < 185

185 ≤ $N_{\text{trk}}^{\text{offline}}$ < 220

220 ≤ $N_{\text{trk}}^{\text{offline}}$ < 260

CMS pPb $\sqrt{s_{NN}} = 5.02$ TeV

ALICE, 0-20%

v$_3$[2, $|\Delta \eta| > 0.8$]

v$_3$[2, $|\Delta \eta| > 2$], $N_{\text{trk}}^{\text{offline}} < 20$ sub.