Two- and four-particle correlations in pPb collisions from CMS

Julia Velkovska

for the CMS Collaboration

Motivation

Motivation

High-multiplicity pp collisions at $v_s = 7 \text{ TeV}$ JHEP 1009 (2010) 091

CMS Experiment at the LHC, CERN

Data recorded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST) Run / Event: 139779 / 4994190

(c) Copyright CERN, 2010. For the benefit of the CMS Collaboration.

pPb collisions could be even more violent !

• 418 charged particles detected !

We study 2-particle correlations

To findridges everywhere ...

2013 pPb data: match the multiplicity in PbPb

- Extend the multiplicity range in pPb
- Study Fourier harmonics
- 4-particle correlations
- Revisit PbPb

7

n = 3

n = 2

Questions to address

- What is the origin of the ridge in small systems ?
 - Collective flow ?
 - Quantum interference of gluons (CGC) ?
 - … or something else ?
- What are the initial state fluctuations ?
- Methods:
 - Compare 2- and 4-particle correlations in different collision systems
 - Study high-order harmonics
 - multiplicity dependence

EXPERIMENTAL DETAILS

Data sets and triggers

- Start with a L1 trigger "seed" : total transverse energy > 20,40 GeV
- 4 High-Multiplicity HLT trigger thresholds based on tracking
- Each recorded 20 M events in 3 weeks run
- pPb integrated luminosity: 31nb⁻¹
- PbPb data from 2011: 50-100% , 2.3 $\mu b^{\text{-1}}$ reanalyzed

2-particle correlations

Long and short range correlations

Fourier decomposition

pPb: Subtraction of peripheral correlations

• Away-side: 0.008 pPb HIJING MC 5.02 TeV non-flow correlations $0.3 < p_{\tau}^{trig}$, $p_{\tau}^{assoc} < 3$ GeV/c 0.006 N_{ch}^{gen-level}<20 subtraction $\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}N^{\text{pair}}}{\mathrm{d}\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left\{ 1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta\phi) \right\}$ 2_{Δ} {2, $|\Delta\eta| > 2$ No subtraction 0.004 Subtraction without Y_{iet} weighting Subtraction with Y_{jet} weighting \cap Subtract peripheral 0.002 N_{trk}^{offline}<20 0.000 - to get v_2 , v_3 200 50 100 150 N^{gen-level}(|η|<2.4, p_>0.4GeV/c) $V_{n\Delta}(\text{cent}) - V_{n\Delta}(\text{peri}) \times \frac{N_{assoc}(\text{peri})}{N_{assoc}(\text{cent})} \times \frac{Y^{\text{jet}}(\text{cent})}{Y^{\text{jet}}(\text{peri})}$ Test in HIJING Account for the fact that jet Note: Results are obtained with or correlation increases with multiplicity without peripheral subtraction

multi-particle correlations

Four particle correlations (Q-cumulant method):

$$\begin{array}{c|c} \varphi_{1} & \varphi_{3} \\ \varphi_{2} & \varphi_{4} \end{array} = \begin{array}{c|c} \varphi_{3} & \varphi_{4} \end{array} + \begin{array}{c|c} \varphi_{4} & \varphi_{4} \end{array} + \begin{array}{$$

Effect of multiplicity fluctuations on $c_2{4}$

16

Long range 1 D correlation functions

The ridge yield in different systems

Similar p_T dependence in PbPb and pPb

Turn on around N_{trk} ~ 50 Independent of system size

p_T dependence of v_n : PbPb vs pPb

Remarkable similarity in PbPb and pPb for same multiplicity

Multiplicity dependence of v₂

v_2 {4} turn-on around $N_{trk} \sim 50$; weak multiplicity dependence

Multiplicity dependence of v₂

Multiplicity dependence of v₃

PLB 724 (2013) 213

- Independent of system size
- Does not extrapolate to 0

Other hints of collective effects ?

Inverse slope increases with particle mass and with multiplicity. Reminiscent of radial flow.

F.Sikler on Thursday

Conclusions

- CMS has measured elliptic and triangular flow coefficients in pPb and PbPb collisions
- Similar p_T and multiplicity dependence in different systems ; v_3 is identical in pPb and PbPb
- Four-particle correlations indicate a turn-on of multi-particle dynamics at ~ N_{trk} ~ 50
- The ridge becomes apparent at the same multiplicity independent of system size.

– Are we probing the limits of hydrodynamics ?

- Hints of multiplicity dependent radial expansion
- pPb provides a testing ground for our "reference" ideas

	PbPb data			pPb data		
N ^{offline} bin	(Centrality)	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$	Fraction	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
	± RMS (%)					
[0,∞)				1.00	40	50 ± 2
[0,20)	92±4	10	13 ± 1	0.31	10	12 ± 1
[20,30)	$86{\pm}4$	24	30 ± 1	0.14	25	30 ± 1
[30, 40]	83±4	34	43 ± 2	0.12	35	42 ± 2
[40, 50)	$80{\pm}4$	44	55 ± 2	0.10	45	54 ± 2
[50,60)	78±3	54	68 ± 3	0.09	54	66 ± 3
[60,80)	75±3	69	87 ± 4	0.12	69	84 ± 4
[80,100)	72±3	89	112 ± 5	0.07	89	108 ± 5
[100, 120)	70 ± 3	109	137 ± 6	0.03	109	132 ± 6
[120, 150)	67±3	134	168 ± 7	0.02	132	159 ± 7
[150, 185]	64±3	167	210 ± 9	4×10^{-3}	162	195 ± 9
[185, 220]	62±2	202	253 ± 11	5×10^{-4}	196	236 ± 10
[220, 260]	59±2	239	299 ± 13	6×10^{-5}	232	280 ± 12
[260, 300)	57±2	279	350 ± 15	3×10^{-6}	271	328 ± 14
[300, 350)	55 ± 2	324	405 ± 18	1×10^{-7}	311	374 ± 16

