Electroweak bosons in CMS

Anna Julia Zsigmond Wigner RCP

for the CMS Collaboration

International Conference on the Initial Stages in High-Energy Nuclear Collisions, Illa da Toxa 9-14. September 2013

CMS detector

PbPb collisions in CMS

- The total hadronic cross section is divided into centrality classes
- The corresponding impact parameter and number of binary collisions comes from Glauber model calculations

Anna Julia Zsigmond

Introduction to EWK bosons

- LHC energies allow for first measurements of Z and W bosons in heavy ion collisions
- Electroweak bosons are essentially not perturbed by the QCD medium
 - At first order, check the binary scaling hypothesis
 - Serve as a reference to modified processes (jets...)
 - Second order modifications ultimately constrain initial state (npdf)
- Isolated photons
 - From 2010: PLB 710 (2012) 256
 - From 2011: PLB 718 (2013) 773, photon+jet
- Z in muon and electron channel
 - + From 2010: PRL 106 (2011) 212301
 - From 2011: CMS-PAS-HIN-12-008 and CMS-PAS-HIN-13-004
- W in muon channel
 - + From 2010: PLB 715 (2012) 66

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Muon reconstruction

- Global muons reconstructed with information from inner tracker and muon stations
- $_{\bullet}$ Good resolution for high $p_{_{\rm T}}$ muons

Anna Julia Zsigmond

First $Z \to \mu^+ \mu^-$ candidate in PbPb

Z production in muon channel

PRL 106 (2011) 212301 CMS-PAS-HIN-13-004

Z production in muon channel

CMS-PAS-HIN-12-008

- Z production scales with number of binary nucleon-nucleon collisions
- Comparison with POWHEG NLO generator
 - Good description of data at LHC and Tevatron energies

Z production in muon channel

- Differential measurement with 2011 statistics
- No large deviations from the POWHEG reference

Electron reconstruction

- Seeded by supercluster in ECAL
- Inner track reconstructed from the outside with radiation taken into account
- Electron candidate a supercluster matched to an inner track

Z production in electron channel

CMS-PAS-HIN-13-004

- Electron selection:
 - → p_T^e > 20 GeV/c
 - → $|\eta^e|$ < 1.44 only ECAL Barrel
 - Shower shape used to reject photons
 - HCAL used to reject QCD jet background
- Background well described by same sign pairs
- 328 Z candidates

Z production in pp collisions

- Reference data from 2013 February $L_{int} = 5.35 \text{ pb}^{-1}$
- Direct measurement of nuclear modification factor (R_{AA}) possible

Nuclear modification factor

CMS-PAS-HIN-13-004

- dN_{AA} / T_{AA} = $d\sigma^{pp} \times R_{AA}$
- T_{AA}: nuclear overlap function from Glauber-model calculations
- R_{AA} (muon) = 1.06 ± 0.05 ± 0.11
- R_{AA} (electron) = 1.08 ± 0.09 ± 0.14
- The two leptonic decay channels are in agreement
- Z production (as expected) scales with T_{AA}

Nuclear modification factor

R 2.5 2.5 RAA Z → µ⁺µ CMS Preliminary Systematic uncertainty Systematic uncertainty s_{NN} = 2.76 TeV $Z \rightarrow e^+e^-$ Z → e⁺e⁻ Systematic uncertainty Centrality 0-100% Systematic uncertainty pp lumi uncertainty pp lumi uncertainty T_{AA} uncertainty T₄₄ uncertainty 1.5 1.5 0.5 0.5 CMS Preliminary √s_{NN} = 2.76 TeV Centrality 0-100% 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 í٥ 20 30 40 50 60 70 80 90 100 10 0 p_T^z (GeV/c) lv^zl

- $_{\bullet}$ Split in rapidity and $p_{_{T}}$
- Possible nuclear effects are within the uncertainties of the measurements

CMS-PAS-HIN-13-004

$W \rightarrow \mu\nu \ boson \ candidate$

OVS Experimentations I.-O. CERN

Data recorded: 2010 Nev 13 04:4 058.332428 OR (35:4 058 OF 81) Pon / Event: 151027 (11518/23

(QDDDx M0. A) (pite seawed)

Anna Julia Zsigmond

- ${\scriptstyle \bullet}$ W signal visible in single muon $p_{_{\rm T}}$ spectrum
- Simple missing p_{τ} calculated from $p_{\tau} > 3$ GeV tracks in the event
- W candidate selection with one muon $p_{T} > 25$ GeV, $|\eta| < 2.1$, missing $p_{T} > 20$ GeV and veto on Z candidates

- ${\scriptstyle \bullet}$ Transverse mass reconstructed from the muon and missing ${\rm p}_{_{\rm T}}$ measurements
- W candidates at 2.76 TeV

	PbPb 2010	pp 2011
W ⁺	275	301
W.	264	165

PLB 715 (2012) 66

PLB 715 (2012) 66

- Less W^+ and more W^- produced in PbPb, then in pp \rightarrow isospin effect
- 2010 PbPb statistics \approx 2011 pp statistics at 2.76 TeV center-of-mass energy / nucleon pair

 $dN_{AA} / T_{AA} = d\sigma^{pp} \times R_{AA}$ $R_{AA} (W) = 1.04 \pm 0.07 \pm 0.12$ $R_{AA} (W^{+}) = 0.82 \pm 0.07 \pm 0.09$ $R_{AA} (W^{-}) = 1.46 \pm 0.14 \pm 0.16$ Consistent with isospin effect

- Charge asymmetry = $(N(W^{+}) N(W^{-})) / (N(W^{+}) + N(W^{-}))$
- pp: W⁺ higher than W⁻
- PbPb: W^{-} dominates for large $|\eta^{\mu}|$
- Experimental values compatible with NLO pQCD predictions

Anna Julia Zsigmond

- Z and W boson production is unmodified by the hot QCD medium produced in heavy ion collisions
- Electroweak boson production yield scales with the number of binary nucleon-nucleon collisions
- Measurement of nuclear modification factor of Z and W bosons in muon channel and Z bosons in electron channel does not show large deviations from 1
- Nuclear effects (isospin, shadowing, etc.) on Z production are small with respect to uncertainties
- Strong isospin effect as expected when separating W⁺ and W⁻

Outlook

- pPb collision data taken in 2013
- Analysis of electroweak boson production ongoing
- Important input for nuclear PDFs
- Z+jet measurements in future PbPb and pPb data will give further insights to jet quenching and nuclear effects

Thank you for your attention!

CMS Heavy-ion results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

IS2013, Illa da Toxa, 9-14. Sept. 2013