

J/ψ photoproduction in Pb-Pb and p-Pb ultra-peripheral collisions with ALICE at LHC

D. De Gruttola* for the ALICE Collaboration

*Centro Fermi Roma and Salerno INFN - Italy

Overview

- ✓ LHC as γPb and γp collider (Ultra-peripheral collisions)
- ✓ Physics motivation (gluon distribution in nuclei and nucleons)
- ✓ ALICE and UPCs (detector and trigger description)
- ✓ J/ψ cross section (forward and mid-rapidity)
- ✓ results and comparison with models (gluon shadowing)
- √γγ cross section (constraint on QED processes)
- ✓ first results in pA (proton as a target)
- ✓ conclusions (achieved results and on going analyses)

13/09/2013

LHC as yPb and yp collider

- ✓ at the LHC heavy ions are accelerated towards each other at ultra relativistic energies
- ✓ being charged particles, they are accompanied by an electromagnetic field
- ✓ the EM field can be viewed as a flux of quasi-real photons
- ✓ intensity of the photon beam proportional to Z²
- ✓ photon flux well described in Fermi-Weizsäcker-Williams approximation
- √ hadronic processes strongly suppressed when b > R₁+R₂
- \checkmark high σ for γ-induced reactions e.g. vector meson photoproduction

✓ virtuality of the photon dependent on the radius of the emitting particle:

$$Q^{2} \approx \left(\frac{\hbar c}{R}\right)^{2}$$

$$\gamma \text{ from p } \rightarrow Q^{2} \approx (250 \text{MeV})^{2}$$

$$\gamma \text{ from Pb } \rightarrow Q^{2} \approx (30 \text{MeV})^{2}$$

Physics motivation

possibility to study non linear effects at low x in the gluon distribution of the target

✓ quarkonia photo-production allows to study the gluon density G(x,Q²)

in Pb

$$\left. \frac{d\sigma(\gamma N \to VN)}{dt} \right|_{t=0} \approx \frac{\alpha_s \Gamma_{ee}}{3\alpha_e M_V^5} 16\pi^3 \left(xG(x, Q^2) \right)^2$$

✓ Bjorken-x accessible at LHC x = $(M_V/\sqrt{s_{NN}})$ exp(±y) ~ 10^{-2} - 10^{-5}

✓ vector meson photo-production as tool to measure nuclear gluon

shadowing and saturation

$$R_g^A(x,Q^2) = \frac{G_A(x,Q^2)}{G_p(x,Q^2)}$$

C A Salgado et al 2012 J. Phys. G.: Nucl. Part. Phys. 39 015010

Physics motivation

√ γp cms energy W_{νp}

LHeC Study group ArXiv: 1211.4831

- coherent vector meson production:
 - ♦ photon couples coherently to all nucleons
 - \Leftrightarrow <p_T> ~ 1/R_{Ph} ~ 60 MeV/c
 - ♦ no neutron emission in ~80% of cases
- ✓ incoherent vector meson production:⇒ photon couples to a single nucleon

 - \Leftrightarrow <p_T> ~ 1/R_p ~ 500 MeV/c

 an interesting physics case is also γγ interactions to provide informations on QED processes when the vertex $\sqrt{\alpha}$ is replaced by $Z\sqrt{\alpha}$

ALICE layout

ALICE and UPCs (J/ψ → μ+μ-)

UPC forward trigger

- \Rightarrow single muon trigger with p_T > 1 GeV/c (-4< η <-2.5)
- \Rightarrow hit in VZERO-C (-3.7< η <-1.7)
- \Rightarrow no hits in VZERO-A (2.8< η <5.1)

integrated luminosity ~ 55 µb⁻¹

- ✓ offline event selection:
 - ♦ beam gas rejection with VZERO
 - ♦ hadronic rejection with ZDC and SPD
- ✓ track selection:

 - \Rightarrow opposite sign dimuon: -3.6 < y < -2.6

ALICE and UPCs $(J/\psi \rightarrow \mu^{+}\mu^{-} \text{ and } J/\psi \rightarrow e^{+}e^{-})$

UPC mid-rapidity trigger

- ♦ ≥ 2 hits in SPD
- ♦ 2≤ TOF hits ≤6 and back-to-back topology

integrated luminosity ~ 23 µb⁻¹

- ✓ offline event selection:

 - ♦ primary vertex
 - \Rightarrow max (p_{T1}, p_{T2}) > 1 GeV/c

 - ZDC cut on number of neutrons emitted in coherent events

ALICE and UPCs

central Pb-Pb collision

UP Pb-Pb collision at mid-rapidity

two tracks in an otherwise empty detector

detailed studies done to understand the noise and the emptiness of the detector

UP Pb-Pb collision at forward rapidity

J/ψ measurements (coherent at forward rapidity)

first measurement of J/ ψ photo-production done at LHC

Phys. Lett. B718 (2013) 1273 -1283

p_T distribution fitted using MC samples representing several components:

- coherent and incoherent J/ψ
- ψ' feed down
- $\Rightarrow \gamma \gamma \Rightarrow \mu^+ \mu^-$

distribution peaked at low momentum as expected from coherent production

 J/ψ photo-production probes the gluon distribution in Pb at x~10⁻²

J/ψ measurements (coherent at mid-rapidity)

dimuon channel

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

p_T distribution fitted using MC samples representing several components:

- \diamond (coherent and incoherent) ψ ' feed down
- $\Leftrightarrow \gamma \gamma \to \mu^+ \mu^-$
- ♦ hadronic

p_T < 200 MeV/c and < 6 neutrons emitted by nuclei

distribution peaked at low momentum as expected from coherent production

J/ ψ photo-production probes the gluon distribution in Pb at x~10⁻³

J/ψ measurements (coherent at mid-rapidity)

dielectron channel

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

p_T distribution fitted using MC samples representing several components:

- \Leftrightarrow (coherent and incoherent) ψ ' feed down
- $\Rightarrow \gamma \gamma \rightarrow e^+e^-$
- ♦ hadronic

p_T < 300 MeV/c and < 6 neutrons emitted by nuclei

distribution peaked at low momentum as expected from coherent production

 J/ψ photo-production probes the gluon distribution in Pb at x~10⁻³

Results and comparison with models

Phys. Lett. B718 (2013) 1273 -1283

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

$$|y| < 0.9$$
 $\rightarrow d\sigma_{J/\psi}^{coh} / dy = 2.38_{-0.24}^{+0.34} (stat + syst) \text{ mb}$
-3.6 < y < -2.6 $\rightarrow d\sigma_{J/\psi}^{coh} / dy = 1.00 \pm 0.18 (stat)_{-0.26}^{+0.24} (syst) \text{ mb}$

data are closer to models incorporating nuclear gluon shadowing

measured cross section in good

agreement with the calculation using

- ✓ AB: Adeluyi and Bertulani, PRC85 (2012) 044904 these models use LO pQCD scaled by an effective constant to correct for missing contributions MSTW08 assumes no nuclear effects, EPS08/09 incorporate nuclear effects according to different parametrizations
- ✓ CSS: Cisek, Szczurek, Sch.fer PRC86 (2012) 014905 color dipole model based on unintegrated gluon distribution of the proton
- STARLIGHT: Klein, Nystrand PRC60 (1999) 01493
 GVDM coupled to a Glauber approach and using HERA data to fix the γp cross section
- ✓ GM: Goncalves, Machado, PRC84 (2011) 011902 color dipole model, where the dipole nucleon cross section is from the IIM saturation model
- ✓ RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252
 based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation

J/ψ measurements (incoherent at mid-rapidity)

dimuon channel

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

p_T distribution fitted using MC samples representing several components:

- \diamond (coherent and incoherent) ψ feed down

 $p_T > 200 \text{ MeV/c}$

- $\Leftrightarrow \gamma \gamma \to \mu^+ \mu^-$
- ♦ hadronic

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

J/ψ measurements (incoherent at mid-rapidity)

dielectron channel

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

p_T distribution fitted using MC samples representing several components:

 $p_T > 300 \text{ MeV/c}$

- $\Rightarrow \gamma \gamma \rightarrow e^+e^-$
- ♦ hadronic

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

13/09/2013

Results and comparison with models

arXiv:1305.1467 [nucl-ex] submitted to EPJ-C

♦ none of the three existing models predicts the incoherent cross section correctly

♦ STARLIGHT predicts a correct incoherent-to-coherent ratio (0.41)

 \Rightarrow ALICE measurement $0.41^{+0.10}_{-0.08}(stat + syst)$

- ✓ STARLIGHT: Klein, Nystrand PRC60 (1999) 01493 GVDM coupled to a Glauber approach and using HERA data to fix the yp cross section
- ✓ RSZ: Rebyakova, Strikman, Zhalov, PLB 710 (2012) 252 based on LO pQCD amplitude for two gluon exchange where the gluon density incorporates shadowing computed in leading twist approximation
- ✓ LM: Lappi, Mantysaari, PRC87 (2013) 032201 color dipole model based with Glauber approach and a saturation prescription

the ratio $\sigma_{\text{inc}}/\sigma_{\text{coh}}$ provides further constraints on the treatment of the nuclear modifications implemented in the different models

γγ cross section

arXiv:1305.1467 [nucl-ex]

- \checkmark the γγ cross section measurement provides important constraints on QED calculations when the vertex $\sqrt{\alpha}$ has to be replaced by $Z\sqrt{\alpha}$
- ✓ due to the large Pb charge, giving $Z\sqrt{\alpha} \sim 0.6$, the inclusion of higher order terms is not straightforward → the models* including higher order terms predict a reduction of the cross section up to 30%

$$\Leftrightarrow$$
 [2.2,2.6] GeV/c² \Rightarrow $\sigma_{\gamma\gamma}^{e^+e^-} = 154 \pm 11(stat)_{-10.8}^{+16.6}(syst) \,\mu b$ precision 12%

$$\Rightarrow$$
 [3.7,10] GeV/c² $\Rightarrow \sigma_{\gamma\gamma}^{e^+e^-} = 91 \pm 10(stat)_{-8.0}^{+10.9}(syst) \ \mu b$ precision 16%

- v the measured values for the $\gamma\gamma$ cross sections are 20% above but fully compatible within 1.0 σ and 1.5 σ with the STARLIGHT (LO) prediction for the low and high invariant mass intervals (128 μb and 77 μb)
- → the models predicting a strong contribution of higher-order terms (not included in STARLIGHT) are not favored

*Baltz Phys. Review 80 2009 034-901

UPCs in pA

forward rapidity $(J/\psi \rightarrow \mu^+\mu^-)$

semi-forward rapidity $(J/\psi \rightarrow \mu^+\mu^-)$

trigger logic:

- ✓ similar to Pb+Pb case for a similar to Pb+Pb case f forward and mid-rapidities, but improved purity
- ✓ semi-forward
 - ♦ V0A and V0C (≥5 cells) vetoed
 - ♦ SPD multiplicity (≥ 7 outer chips) vetoed

 - ♦ SPD (≥ 1 chips)

ALICE Physics potential in pA

 J/ψ photoproduction dominated by γ +p process

p-Pb: proton moves towards the muon arm

Pb-p: Pb-nucleus moves towards the muon arm

```
accessible kinematics regions:
```

21<W_{yp}<45 GeV p+Pb forward p+Pb semi-forward 45<W_{vp}<82 GeV

mid-rapidity

100<W_{γp}<250 GeV

Pb+p semi-forward 300<W_{yp<}550 GeV

Pb+p forward

550<W_{vp}<1160 GeV

H1: A. Aktas et al. Eur. Phys. J. C46:585-603,2006 ZEUS: S. Chekanov et al., Nucl. Phys. B695 (2004) 3

- ✓ HERA energy range extended by factor of ~ 3
- ✓ lower energy of the HERA experiments covered
 - ✓ preliminary results at forward rapidity
 - ✓ analysis ongoing for central and semi-forward samples

13/09/2013

Exclusive J/ψ production in p-Pb

- √ forward rapidity p-Pb (p → muon arm side)
- ✓ γ-proton CM energies: 21<W<45 GeV, <W> = 29.8 GeV

- ✓ contribution from events where the proton breaks up (dissociation)
- ✓ shape of non-exclusive J/ ψ p_T distribution estimated from data by considering events with more than 2 hits in V0-C

*rapidity indicated in the plots are in the lab frame

Measured cross sections in p-Pb (preliminary)

- ✓ ALICE cross section as a function of rapidity in the lab frame
- comparison with fixed-target experiments and model calculations
- ✓ consistency between ALICE and HERA exclusive cross section
- correction for feed down from ψ'
- ✓ measured σ(p-Pb) to σ (γ+p) through the photon spectrum $n_γ$ (y):

 $d\sigma (p+Pb\rightarrow p+Pb+J/\psi)/dy=n_{\gamma}(y) \sigma(\gamma+p\rightarrow J/\psi+p)$

rapidity	$d\sigma(p-Pb \rightarrow p-Pb+J/\psi)/dy(\mu b)$
-4.0 < y < -2.5	$6.18 \pm 0.42 (\mathrm{stat}) \pm 0.56 (\mathrm{sys})$
-4.0 < y < -3.5	$5.50 \pm 0.72 (\mathrm{stat}) \pm 0.52 (\mathrm{sys})$
-3.5 < y < -3.0	6.26 ± 0.55 (stat) ± 0.57 (sys)
-3.0 < y < -2.5	$6.39 \pm 0.94 (\mathrm{stat}) \pm 0.59 (\mathrm{sys})$

Exclusive J/ψ production in Pb-p

√ forward rapidity Pb-p (Pb → muon arm side)

✓ analysis on going (as for mid and semi forward rapidities)

Conclusions

- LHC as γPb and γp collider to study γγ, photo-nuclear and γp processes
- ✓ measurement of exclusive vector meson (J/ ψ) cross sections to investigate the gluon distribution in the nuclei
- ✓ results agree with EPS09 gluon distribution, confirming the presence
 of gluon shadowing
- √ γγ cross section to set limits on higher order terms in QED processes.
- ✓ two ALICE papers:
 - ♦ Phys. Lett. B718 (2013) 1273-1283
- ✓ p-Pb: good agreement on J/ ψ photoproduction from previous experiments at <W> ~ 30 GeV
 - \Leftrightarrow first results on exclusive J/ ψ in γp

13/09/2013

back up

p_T distributions (linear scale)

p_T distribution fitted using MC samples representing several components:

- \diamond (coherent and incoherent) ψ ' feed down
- $\Rightarrow \gamma \gamma \rightarrow \mu^+ \mu^-$
- ♦ hadronic

$$N_{\mathrm{J/\psi}}^{\mathrm{coh}} = \frac{N_{\mathrm{yield}}}{1 + f_I + f_D}$$

distribution peaked at low momentum as expected from coherent production

Feed down $(\psi' \rightarrow J/\Psi + anything)$

- ✓ fraction f_D of J/ Ψ coming from the decay of ψ ' \rightarrow J/ Ψ + anything estimated by simulating a sample of coherently produced ψ ' with STARLIGHT, using PYTHIA to simulate their decay into J/Ψ
- \checkmark contribution from incoherent ψ ' expected to be negligible for the enriched coherent J/ Ψ samples \rightarrow not considered
- $\checkmark \psi'$ polarization can be shared between J/ Ψ and the other daughters $\rightarrow \psi'$ decay simulated assuming no polarization, full transverse and full longitudinal polarization for the J/ Ψ

for a given polarization P:
$$f_D^P = \frac{\sigma_{\psi^{'}} \cdot BR(\psi^{'} \to J/\psi + \text{anything}) \cdot (\text{Acc} \times \varepsilon)_{\psi^{'} \to J/\psi}^P}{\sigma_{J/\psi} \cdot (\text{Acc} \times \varepsilon)_{J/\psi}}$$

see table in the next slide for the results

Feed down ($\psi' \rightarrow J/\Psi$ + anything)

alternatively the ratio ψ ' over J/ Ψ , used to compute the feed-down f_D , can be extracted from the data

due to the limited statistics the two decay channels were combined:

 $N_{\psi}^{,} = 17\pm10 \text{ and } N_{J/\psi} = 505\pm48$

$$f_D^P = \frac{N_{\psi'} \cdot BR(J/\psi \to l^+ l^-) \cdot BR(\psi' \to J/\psi + \text{anything}) \cdot (\text{Acc} \times \varepsilon)_{\psi' \to J/\psi}^P}{N_{J/\psi} \cdot BR(\psi' \to l^+ l^-) (\text{Acc} \times \varepsilon)_{\psi' \to l^+ l^-}^P}$$

 \rightarrow f_D ranges from 11.0±6.5% for transverse ψ polarization to 15±9% for longitudinal ψ

polarization

the average of these estimates is $f_D = 0.10^{+0.05}_{-0.06}$

invariant mass distribution for combined dimuon and dielectron channels

Fit procedure

- ✓ exponential for underlying continuum (systematics evaluated using polynomial)
- ✓ Crystall Ball (exp+gauss) to extract the J/Ψ signal
- ✓ tail CB parameters (α and n) left free for the coherent sample (systematics evaluated fixing the paramters) and fixed to MC values for the incoherent one
- ✓ incoherent dimuons fitted also using a polynomial to take into account
 the combinatorial background, as constrained to the LS pair spectrum
- ✓ fit also constrained to a MC cocktail (J/ Ψ + $\gamma\gamma$)