Theory Summary

Tetsufumi Hirano

Dept. of Physics, Sophia Univ.

International Conference on the Initial Stages in High-Energy Nuclear Collisions Illa da Toxa (Galicia-Spain), September 8-14, 2013

Before start

- Disclaimer...
 - 25 plenary and 33 parallel theory talks
 - Impossible to summarize all of them in 30 minutes
 - Highly biased summary
 - Important: Do not get angry ;-) if your work (from theory community) does not appear! This does not mean less important.

Schematic picture of H.I.C.

Proper time

Theorist Map at IS2013 (58 speakers)

Two Results to Start with...

B.Alver and G. Roland (2010)

 ε_3 resolves ridge and Mach cone. See also, Gyulassy et al. ('97) and Aguiar et al. ('02-)

A part of the main reasons why we are here to discuss "Initial Stages in high energy nuclear collisions"

Main Focus of the Conference

Old and New Picture: Paradigm change? ~2005

• Reference, baseline

- Control experiment
- Initial state effects
- Cold matter effects

- QGP creation
- Final state effects
- Hot matter effects

Old and New Picture: Paradigm change? ~2005 2012-2013

Reference, baseline?

- Control experiment?
- Initial state effects?
- Cold matter?

- QGP creation
- Final state effects
- Hot matter effects
- Strong EM field effects

- Initial state effects
- Cold matter effects

- QGP creation
- Final state effects
- Hot matter effects

P/D-A COLLISIONS

Purpose: To understand initial state Outcome: Non-trivial final state effects?

Interpretation from CGC

Mass Ordering in pA

induces flow-like effect \rightarrow Ridge structure?

Marquet

CGC or CGC+hydro ?

the question is not CGC or hydro, the question is CGC only, or CGC+hydro ?

· in the presence of the flow

one still needs to describe the nature and dynamics of the pre-hydro fluctuations, and the Glauber model is not enough anymore, QCD cannot be ignored

Bzdak, Schenke, Tribedy and Venugopalan (2013)

other options to access the QCD momentum correlations ?
e+A collisions, and maybe p+A in the forward region

Interpretation of data using hydro

- Most of the people did not believe hydro description of the QGP (~ 1995)
- Hydro at work to describe elliptic flow (~ 2001)
- E-by-e hydro at work to describe higher harmonics (~ 2010)
- Even in p+p and/or p+A?

coarse initial graining profile size

Hard Probes in pA

Successfull pQCD description of nuclei in DGLAP region

Almost no jet quenching in pPb

Talks by Qiu, Zurita, Rakotozafindrabe,...

ISOTROPISATION, THERMALISATION, ANISOTROPIC HYDRO

Isotropisation/Themalisation

$$T^{\mu\nu} = \operatorname{diag}(\epsilon(0^+), \epsilon, \epsilon, -\epsilon)$$

Negative pressure

- \rightarrow Negaive pdV work
- \rightarrow Energy stored in the system
- \rightarrow Something like an elastic body

$$T^{\mu\nu} = \operatorname{diag}(\epsilon(\tau_{\mathrm{iso/therm}}), P_T, P_T, P_L)$$

with $P_T \approx P_L$

Talks by McLerran, Venugopalan, Schenke, Epelbaum, Kurkeka, Heller, Van der Schee, Iida, Srivastava, Tsutsui ,...

Longitudinal and transverse pressure vs. proper time

System reaches a hydrodynamic regime at ~ 0.4 fm/c! even for small coupling (α_s ~10⁻²)

AdS/CFT: Heller, van der Schee, pQCD: Kurkela, CYM: lida, Abellian Higgs: McLerran

Anisotropic Hydro

Anisotropic hydro can help to describe $P_T > P_L$

Talks by Mrowczynski, Deja

FLUCTUATION, FLUCTUATION, ...

Initial Fluctuation and Harmonics Retinskaya $v_n(\exp, \operatorname{data}) = \left(\frac{v_n}{\varepsilon_n}\right)_{\operatorname{hvdro}} \varepsilon_n$ Inverse problem $t_0=1$ fm/c, linear $t_0=1$ fm/c, quadratic $t_0=0.5$ fm/c, quadratic 0.15 η/s≠0.24 ε_2 28 0.1 k=0.6 (LHC) k=0.5 (RHIC) s=00.15 0.183

Talks by Ollitrault, Luzum, Retinskaya, Schenke, Niemi, Floerchinger, Marty,...

Fluctuation, fluctuation, ...

Fluctuation of NN inelastic cross section \rightarrow "Fat" proton

Mueller

Large N_{part} and high multiplicity events
→ Sufficient deposited energy and reasonable gradient
→ Hydro applicable even in pp/pA collisions

Fluctuation, fluctuation, ...

Fluctuation of saturation scale

 \rightarrow Important in high multiplicity events in CGC

Fluctuation in quantum evolution: Dumitru, Triantafyllopoulos

Shock Wave in dA (and AA?)

Squeeze-out in perpendicular direction? Any implication in observables?

See also, Volcano scenario: T.D.Lee, CU–TP–226 (1982) Gyulassy, Rischke, Zhang, Nucl.Phys. A613 (1997) 397

Fluctuation, fluctuation, ...

Initial enthalpy fluctuation and its expansion in 2D space

HYDRO AND TRANSPORT THEORY

pQCD + final state saturation +(2+1)D viscous hydro

Paatelainen

Charged particle p_T spectra VS Data at the LHC and RHIC

• $T_{\rm chem}$ determines the low p_T shape of the spectra (better shape with PCE 175 MeV than 150 MeV)

LHC

18 / 23

Brand-New Viscous Hydro Codes

Effect of bulk viscosity

*USP=Ultrarelativistic Smooth Particle =Universidade de São Paulo

ECHO-QGP

Numerical test done \rightarrow Data analysis

*ECHO=Eulerian Conservative High-Order Code

Full 2nd Order

Compare

wo/ nonlinear terms

$$\tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta$$

w/ nonlinear terms

$$\tau_{\pi} \dot{\pi}^{\langle \mu\nu\rangle} + \pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} + 2\pi^{\langle \mu}_{\alpha} \omega^{\nu\rangle\alpha} - \frac{4}{3} \tau_{\pi} \pi^{\mu\nu} \theta + \frac{18}{35} \tau_{\pi} \frac{\pi^{\langle \mu}_{\alpha} \pi^{\nu\rangle\alpha}}{\varepsilon_{0} + P_{0}} - \frac{10}{7} \tau_{\pi} \pi^{\langle \mu}_{\alpha} \sigma^{\nu\rangle\alpha}.$$

what is the difference?

Effect of nonlinear terms

Need to implement of full 2nd order terms in codes in the next generation

22

Kinetic Approaches

Greco A IQCD: Meyer et al. ○ IQCD: Nakamura et al. ○ XPT Meson Gas ○ HIC-IE Hadron Gas -0.5 0 0.5 1 1.5 2

kinetic + NJL

 \rightarrow phase transition behaviour

Implement wanted η/s in transport model

Kinetic approaches \rightarrow Non-eq. + Hydro-like behaviour

See also talk by Greiner on BAMPS

Strong EM fields

Voloshin

$eB \sim 10^{17}$ Gauss

Chiral magnetic wave in expanding background Charge dep. v_2 ? \rightarrow Alternative interpretation by Bozek

Hirono

Strong E-field in Cu+Au collisions → Measure E-field?

Summary of Summary

- p/d-A collisions provide us with a new opportunity to learn novel aspects of high energy hadron/nuclear reaction in a unified picture.
- Let us keep in touch with each other between sub-communities of initial stages (CGC, nuclear PDF, ...) and final evolution (hydro, ...).
- Future e-A program should shed light on more precise structure of hadrons/nuclei at very high energy.

Before the End...

Let's thank Carlos², Nestor and local organisers for excellent organisation the conference!