Studying the medium behavior of the dilute system in d+Au collisions in PHENIX

John Chin-Hao Chen
RIKEN BNL Research Center

IS2013
2013/09/12
Ridge at RHIC

Ridge appears in central Au+Au collisions, and extend to $|\Delta \eta| \sim 4$

PRC 80 064912

(b) Au+Au 0-30% (PHOBOS)

PRL 104 062301
Ridge at LHC

- Ridge appears at high multiplicity pp/pPb collisions
- The ridge looks like a v2 structure
What about d+Au at RHIC?

- A relatively simple system compare to Au+Au
- A slightly more complicated system than pPb
- A much lower energy than LHC (0.2 TeV vs 5.02 TeV)

- Can we see $v2$ in dAu?
- Can we see ridge in dAu?
Lessons from previous experience

• From the experience of LHC:
 – We need to select high multiplicity events

• From measuring v_2 in Au+Au collisions:
 – The medium in d+Au is thin, the non-flow contribution is strong
 – Need to remove the non-flow contribution as cleanly as possible
Measuring dAu v_2/ridge in PHENIX

- Use two-particle correlation method
 - Both particles fall in central arm acceptance
 - $0.48<|\Delta \eta|<0.7$
- Select most central d+Au collisions (0-5%)
- Use peripheral d+Au collisions (50-88%) as a proxy for non-flow contributions
- After subtracting the non-flow contribution, extract the Fourier coefficients
Correlation functions in d+Au

- $0.48 < |\Delta \eta| < 0.7$
- Use ZYAM to subtract the underlying background
- The per trigger yield correlation in 0-5% d+Au collisions is larger than d+Au 50-88%
- After subtracting 50-88%, the remaining correlation function has a v_2-like shape
$c_2 \ (c_3) \ vs \ p_T$

- $c_n = v_n^A \ast v_n^B$
- Significant c_2, and c_2 increases with p_T
- c_3 is consistent with 0, basically no c_3 (or v_3) contribution in dAu!
• v_2 increases with p_T
• v_2 in d+Au agrees well with hydro calculations up to 2 GeV
• v_2 in d+Au (@200 GeV) > v_2 in p+Pb (@ 5.02 TeV)
\(v_2/\varepsilon_2 \) vs 1/S dN/d\(\eta \)

- \(v_2/\varepsilon_2 \) in Au+Au (@200GeV) roughly follows the Pb+Pb trend (@ 2.76 TeV) in 1/S dN/d\(\eta \)
- d+Au roughly follows the trend
Central-forward (backward) correlation

- The multiplicity distributions in d+Au collisions are asymmetric
- Measure the two-particle correlations of one particle at mid-rapidity (with central arm spectrometer, \(|\eta|<0.35\)) and another particle at forward calorimeter (with Muon Piston Calorimeter, \(3.1<|\eta|<3.9\))
Central-forward (d-going side)

- When correlated with d-going side, there is no local maximum in correlations at $\Delta \phi \sim 0$
- The correlation is dominated by c_1 contribution
Central-backward (Au-going side)

- When correlated with Au-going side, there is significant correlations at $\Delta \phi \sim 0$
- The nearside correlation decreases when moving to peripheral d+Au collisions
- c_1 and c_2 are comparable in central d+Au collisions
Summary

- d+Au v_2 is measured via two particle correlation method in PHENIX
- The v_2 value is consistent with hydro calculations
- v_3 is consistent with 0
- When particles at mid-rapidity are correlated with particles at forward rapidity on Au-going side, a near-side correlation has been observed, where no correlation is seen in d-going side