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Fluctuations in heavy-ion collisions

 Final state observables
— flow harmonics
— two-particle correlations

7' N

Hadronic cascade
I

Viscous hydro

L]
* Initial state fluctuation

— nucleon distribution | |
— quantum fluctuations J .
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Fluctuations in heavy-ion collisions

 Final state observables
— flow harmonics
— two-particle correlations

Other fluctuations

* hydro fluctuation

* jets/mini-jets

e critical phenomena

* Initial state fluctuation

— nucleon distribution

— quantum fluctuations
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Fluctuations in heavy-ion collisions

* Final state observables :
_ Experimental
— flow harmonics
data
— two-particle correlations

Other fluctuations L .
: Quantitative comparison
e lhydro fluctuation |

S e between dynamical
* critical phenomena model and data

e Initial state fluctuation

R e shear viscosity
— nucleon distribution e |nitial state model
— quantum fluctuations * etc.
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Hydrodynamic fluctuation

= thermal fluctuation of the dissipative current field
mhY = 2n8<“u”> + omh?, o
/

<(57Tij (Sﬂ'ij> ~ 4T7’}/V V: 3+1 dim. volume

e shear viscosity decreases spatial anisotropy

- measurable effect in higher harmonics

* hydrodynamic fluctuations increases spatial anisotropy
— 07 200 ) ~ 1/+/(n/s)(V/Em4) |20 MeY

length ~ 1fm

— important in small n/s and small V
< peripheral, pA?, higher harmonics v, @
— Non-linear evolution
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Causal hydrodynamics

* First-order constitutive equation
Y Qnamuw

—instability, and acausal modes

* Second-order constitutive equation

T = —7 D) 4 2pd ) 4 -

—common in recent dynamical calculations

»

hydrodynamic fluctuations
In a causal dissipative hydrodynamics
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Constitutive equation (CE)

Constitutive eq. in linear response regime

e integral form: T" = II, #*", V}L.“

I — / d42'G(x — o)k F(z')

memory 1st order
function term
e differential form:
L1 =kF e.g.
/ 1st order £ =1+mD

[ + (higher order terms) DI + 11 = —(0,
finite-order Iin derivatives
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Fluctuation-dissipation relation

* Hydro fluctuations appearing in constitutive eq.

['(x) = /d4x'G(:c — 2k F(2") + 0T ().

hydro
fluctuation

Fluctuating hydrodynamics

* Fluctuation-dissipation relation (FDR)
in Generalized Langevin Equation

(T (x)oT' (")) = TG (x — x')
=Tk|G(x — ') + G(z' — x)]

G is not delta function in general = colored noise
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In differential form

 Fluctuation in the differential form

L' =rF +& E = 2ol

1st order hydro
term fluctuation

* FDR
(0T (x)oT (")) = TG (v — ) colored noise
E(2)E(x")) = (LT () LT (")) = ? white/colored?

 Condition to be white
¢ = £6T: white & R, 1 = Ly
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General properties of memory function G
A) Retarded

G(x) =0 if t<O

B) Relaxing in a finite time
G(x) 2 0ast—>

C) Timelike
G(x) =0 if x? <0

D) Positive-semidefinite (from FDR)
(6r.6r,) =1G
variance-covariance matrix of 6l
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Property of fluctuation in differential form

1 = 4 prob.
Z — ]_ —I— D G)
4+ ...+ DN \ _/4—»&_’
| = | — T or
L _|s_expanded_ to retarded: G=0 if t<O Covariance matrix
fm'te_orqer In relaxation: G0 as t> is positive-
derivatives timelike: G=0 if x2<0 semidefinite
‘-V *‘proof in backup *-V

Xw,k — 1+ wAg.

-

((x)€(2")) = 2Tk (2 — 2').

Fluctuation in the differential form is white

2013/09/12
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 There are sources of event-by-event fluctuations

during the dynamical evolution as well as in the
initial state.

* Hydrodynamic fluctuations
—substantial effects on observables, v,

— colored noise in the integral form of CE
in a causal dissipative hydrodynamics

— white noise in the differential form of CE
< constraints on the linear operator of CE, ¥
< the properties of the memory function
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Colored noises

Causal hydro

—>time correlation
OMM: colored noise

Ne_T/Tr

(6N(t)6M(0)?

2013/05/16

15t order hydro

—>No correlation with a
finite time difference

oM: white noise

~ O(T)

(6N(7)6N(0))
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Backup: condition of é to be white

* FDR
(0T, 1,011,y g/} = ATKTRG 10 (k — k')

e Correlation of € (= LO6M)
(o kb k') = L5 Lo ke (O, (010 ger)
= L oL i ATKTR[ ) L, )0 (k — K)
= drkTRL, 1,0 (k — k).

| A Al white < const

w

» ¢ white noise € R.Z,, = const .
w
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Backup: Structure of L (1)
* G is positive-semidefinite
Grier = (2m)*6@W (k — KNG (k)
= 2(2m)*6W (k — KRG (k)
Eigenvalues RG(w) > 0
.« G=1/L
RZL. = RG(k)/|G(K)|* >0

YRZL, k>0
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Backup: Structure of L (2)

e [ :upto Nthorderin D (ziw)

N
fw,k X Qg H i(w — wn,k) N zeroes in w-plane
n=1
» zeroesof L = polesof G=1/L »| |
— G: Retarded = Sw,, > 0 .y

— ..x

— G: Relaxing 2 Sw,, # 0 /7"(\\

 complex argument of L

arg & = —% + Za,rg(wn,k — W)
e( N N) wa,k>0

2727 therefore N=0 or 1
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Backup: Structure of L (3)
* N=Oorl: Z,,=1wAk+ B

» FDR
(€(2)€(x )>—2Tﬁ:

e G:timelike

?,k:ch

same time -> O-fn in spatial part

By, = const = 1.

» gw,k =1+ ZLUAk
(E(@)¢(2")) = 2TRd™ (z — 2'),

2013/05/16 18



Backup: Relations

oIl : colored
N

Relaxation time

Causality —> ey S —> [/Integral CE/Differential CE
near
equilibrium FDR —> RelL >0
L deriv. expansion
G relaxes
\ 4
G iIs retarded — L=B +AD
4
Y= G timelike > L=1+AD

¢:. white <—> Rel =const
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Example: 15t order dissipative hydro

. * — 1
* Memory function Gir(z) = 20500 ()
G (z)el = 4nd') (z) Arves

Gy (o)h = —2k;;0) () AP

* CE II =—(6 + oII,
TV Qnawuu) + o,
l/,i—u = IiiijM% T (Sl/z-a
* FDR

(0 (2)0map(a’)) = 4T 8 (& — & )A o,
(Ovf ()0 (a')) = 2Tk 06U (x —a') - (~A"?)

J —_——
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Example: 2"9 order dissipative hydro (1)

1. Differential form of CE
DI+ 11 = — 0,

TWAWQ@DWQ’B + 7hY = 2778<“u”’>,

|

B

Q.
~
<
=

“s:

S

Tij_AuaDl/;y + I/f

e D = u®0, time derivative
* projectors for m+v, v¢
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Example: 2"9 order dissipative hydro (2)

~o")0(r —1')
ot = (T(ZL’), 0‘(5(:)) proper time/comoving coord.

o ExPonentiaI relaxation
2013/05/16
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Example: 2"9 order dissipative hydro (3)

 A(T;T') in memory function: time-by-time projector

A(re; 1) ap = lm A7) o,

N — o0

H A Tf £ Tfk akﬁkak+15k+1 A(Ti)aNﬁN&ﬁv

A(re;m)He = lim A(m)H

N — o0

A(Ti)aNa.

Hmm k).,

e 1, V¥ is confined in its representation of spatial rotation
- time-by-time projectors naturally appears in CE.
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Example: 2" order dissipative hydro (4)

3. Integral form of CE
n-—c [ ar —exp( ""’)e(m’)wng

11

—277/ d'r—exp( T_T)
— 00 Tr Tr

< A(T; 7 )P (Diqupy o) + 6T

L’f —= — / dT ’T |:T eXp ( / dT”T‘?;Cl Tff):| Kl
— 00 T/ jk

X A(T; T )HNTV o B o) + 0V
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Example: 2"9 order dissipative hydro (5)
4. FDR

(6T1(z)6TI(z")) :TC% exp (— i ;HT"') @ (5 — o),

o
(6TH (2) 0T ap(z")) :QTT]: exp (— T - T |)
X A(T; T’)“mﬁﬁ*(‘l)(aﬁ — '),
(Ovy (z)ovs (x')) :T'rigl [T exp (—

X A(T; T’)“C’“’G*(4) (x — 1),
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In numerical simulations

* The integral form of CE and FDR

eqg. - / d'2' G (x — ' )0(a") + O1L,
20> 72/0 in the past

1 e o /
(611(x)oII(2")) :TCT— exp (— |TT 4 |) g*4) (x —x'),
II 1 colored

 The differential form of CE and FDR
e.g. [AyD + 1]II = —¢0 + &,

at the moment

(n(2)én(2)) = 2T¢6W (x — 2').

white
e The differential form of the CE is useful even with

the hydrodynamic fluctuations
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